Отношения, пропорции, проценты
Прямая и обратная пропорциональность
Ответы к стр. 20
Задание 62. Какие величины называют:
а) прямо пропорциональными;
б) обратно пропорциональными?
Приведите примеры.
Решение:
а) Две величины называют прямо пропорциональными, если при увеличении одной из них в несколько раз другая увеличивается во столько же раз. Например, один карандаш стоит 5 рублей, два карандаша стоят 10 рублей и так далее.
б) Две величины называют обратно пропорциональными, если при увеличении одной из них в несколько раз другая уменьшается во столько же раз. Например, машина проехала путь со скоростью 50 км/ч за 2 часа, а мотоцикл тот же путь проехал со скоростью 25 км/ч за 4 часа — время движения обратно пропорционально скорости движения на одном и том же участке пути: с увеличением скорости время уменьшается.
Задание 63. За несколько одинаковых карандашей заплатили 8 р. Сколько нужно заплатить за такие же карандаши, если их:
а) в 2 раза больше;
б) в 2 раза меньше?
Решение:
а) Стоимость карандашей прямо пропорциональна их количеству, поэтому за них заплатили в 2 раза больше: 8 р. • 2 = 16 р.
б) Стоимость карандашей прямо пропорциональна их количеству, поэтому за них заплатили в 2 раза меньше: 8 р. : 2 = 4 р.
Задание 64. За несколько одинаковых карандашей заплатили 8 р. Сколько нужно заплатить за такое же количество карандашей, каждый из которых:
а) в 2 раза дороже; б) в 2 раза дешевле?
Решение:
а) Стоимость карандашей при их постоянном количестве прямо пропорциональна их цене, поэтому заплатят в 2 раза больше: 8 р. • 2 = 16 р.
б) Стоимость карандашей при их постоянном количестве прямо пропорциональна их цене, поэтому заплатят в 2 раза меньше: 8 р. : 2 = 4 р.
Задание 65. На имеющиеся деньги можно купить 30 карандашей.
а) Сколько тетрадей можно купить на те же деньги, если тетрадь дешевле карандаша в 2 раза?
б) Сколько ручек можно купить на те же деньги, если ручка дороже карандаша в 10 раз?
Решение:
а) Стоимость обратно пропорциональна количеству, поэтому при уменьшении стоимости в 2 раза, количество возрастёт в 2 раза: 30 • 2 = 60 тетрадей.
б) Количество обратно пропорционально стоимости, поэтому при увеличении стоимости в 10 раз, количество уменьшится в 10 раз: 30 : 10 = 3 ручки.
Задание 66. Велосипедист за несколько часов проехал 36 км.
а) Сколько километров пройдёт за то же время пешеход, скорость которого в 3 раза меньше скорости велосипедиста?
б) Сколько километров проедет за то же время мотоциклист, скорость которого в 5 раз больше скорости велосипедиста?
Решение:
а) Скорость прямо пропорциональна расстоянию, поэтому при уменьшении скорости в 3 раза расстояние также уменьшится в 3 раза: 36 км : 3 = 12 км — пройдёт пешеход.
Задание 67. Расстояние от села до города велосипедист проехал за 3 ч.
а) За сколько часов это расстояние пройдёт пешеход, скорость которого в 3 раза меньше скорости велосипедиста?
б) За сколько часов это расстояние проедет мотоциклист, скорость которого в 5 раз больше скорости велосипедиста?
Решение:
а) Скорость обратно пропорциональна времени, поэтому при уменьшении скорости в 3 раза, время в пути увеличится в 3 раза:
3 ч • 3 = 9 (ч) — потребуется пешеходу.
Ответ: 9 часов.
б) Скорость обратно пропорциональна времени, поэтому при увеличении скорости в 5 раз, время в пути уменьшится в 5 раз:
3 ч : 5 = 3/5 (ч) — потребуется мотоциклисту.
Ответ: 3/5 часа.
Задание 68. Какова зависимость между:
а) ценой карандаша и стоимостью нескольких таких карандашей при постоянном их количестве;
б) количеством карандашей одного сорта и их стоимостью при постоянной их цене;
в) количеством карандашей и их ценой при постоянной стоимости покупки?
Решение:
а) прямо пропорциональная — чем больше цена карандаша, тем больше общая стоимость карандашей при их постоянном количестве;
в) обратно пропорциональная — чем больше карандашей, тем меньше стоит один карандаш при постоянной стоимости покупки.
Задание 69. Какова зависимость между:
а) скоростью и расстоянием при постоянном времени движения;
б) временем и расстоянием при постоянной скорости движения;
в) временем и скоростью при постоянном пути?
Решение:
а) прямо пропорциональная — чем больше скорость, тем больше пройденное расстояние при постоянном времени движения;
б) прямо пропорциональная — чем больше затрачено времени, тем больше пройденное расстояние при постоянной скорости движения;
в) обратно пропорциональная — чем больше затрачено времени на путь, тем меньше скорость движения при постоянном пути.
Комментарии