Вот и вступили вы уже на взрослую дорожку взрослого пути через среднюю школу. Позади начальная школа, начальные классы, но это совершенно не означает, что впереди будет труднее и сложнее. Касается это как раз того самого учебника математики за пятый класс авторов Мерзляк, Полонский, Якир (ученики почему-то называют его не Мерзляк, а Мерзляков). Ну ладно, если вы учились по программе Перспектива или Школа России, тогда этот учебник вам в самый раз по нарастающей. А если же у вас были в четвертом классе учебники Истоминой, а уж тем более Петерсон, вам можно смело переходить по математике вместо пятого сразу в шестой. Учебник простой. Задания легкие. Из новых тем только темы по геометрии. Качественных вычислительных навыков этот учебник математики ребенку не дает, так что желательно заниматься математикой дополнительно по тренажерам с нашего сайта 7 гуру. 

Но если же вы из тех, кому нужно проверить себя по ГДЗ или же вы родитель, который проверяет домашнюю работу своего ребенка, смело сверяйтесь с нашими правильными ответами. Решебник сделан специально для вас.

Все задания проверены и ответы одобрены учителем математики. В учебнике 2 раздела: натуральные числа и дробные числа, каждый из них разделен на главы в соответствии с программой.

К оформлению заданий в тетради у разных учителей разные требования, в частности к оформлению задач и решению уравнений с неизвестным. С кого-то строго спрашивают писать проверку уравнений и слово ответ, какие-то учителя математики требуют остановиться на нахождении корня и подчеркнуть его. Так что подстраивайтесь под требования своего учителя.

Если возникли какие-то вопросы или уточнения по заданиям учебника, пишите в комментариях.

Пишите, какую страницу проходите. Пишите, требует учитель в задачах писать полный ответ или хватает сокращенного, нужно ли писать цифры 1) 2) и так далее перед каждым действием. Пишите, заставляют ли в уравнениях писать проверку и ответ, и мы дополним наши ГДЗ в соответствии с вашими просьбами.

ГДЗ к учебнику математики за 5 класс Мерзляк

 Вот и вступили вы уже на взрослую дорожку взрослого пути через среднюю школу. Позади начальная школа, начальные классы, но это совершенно не означает, что впереди будет труднее и сложнее. Касается это как раз того самого учебника математики за пятый класс авторов Мерзляк, Полонский, Якир (ученики почему-то называют его не Мерзляк, а Мерзляков). Ну ладно, если вы учились по программе Перспектива или Школа России, тогда этот учебник вам в самый раз по нарастающей. А если же у вас были в четвертом классе учебники Истоминой, а уж тем более Петерсон, вам можно смело переходить по математике вместо пятого сразу в шестой. Учебник простой. Задания легкие. Из новых тем только темы по геометрии. Качественных вычислительных навыков этот учебник математики ребенку не дает, так что желательно заниматься математикой дополнительно по тренажерам с нашего сайта 7 гуру. 

Но если же вы из тех, кому нужно проверить себя по ГДЗ или же вы родитель, который проверяет домашнюю работу своего ребенка, смело сверяйтесь с нашими правильными ответами. Решебник сделан специально для вас.

Все задания проверены и ответы одобрены учителем математики. В учебнике 2 раздела: натуральные числа и дробные числа, каждый из них разделен на главы в соответствии с программой.

К оформлению заданий в тетради у разных учителей разные требования, в частности к оформлению задач и решению уравнений с неизвестным. С кого-то строго спрашивают писать проверку уравнений и слово ответ, какие-то учителя математики требуют остановиться на нахождении корня и подчеркнуть его. Так что подстраивайтесь под требования своего учителя.

Если возникли какие-то вопросы или уточнения по заданиям учебника, пишите в комментариях.

Пишите, какую страницу проходите. Пишите, требует учитель в задачах писать полный ответ или хватает сокращенного, нужно ли писать цифры 1) 2) и так далее перед каждым действием. Пишите, заставляют ли в уравнениях писать проверку и ответ, и мы дополним наши ГДЗ в соответствии с вашими просьбами.

ГДЗ к учебнику математики за 5 класс Мерзляк

Стр. 6

Раздел 1. Натуральные числа и действия над ними. Глава 1. Натуральные числа. Параграф 1. Ряд натуральных чисел

Ответы 7gy.ru  к странице 6 

1. Назовите 14 первых натуральных чисел.

Ответ: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14.

2. Какого числа не хватает в записи натурального ряда чисел: 1,2,3,4,5,6,7,9,10,11,...?

Ответ: не хватает числа 8.

 

Страница 7

....................................

 

65

Параграф 9. Числовые и буквенные выражения. Формулы

Страница 65

241. Прочитайте числовые выражения, используя термины "сумма", "разность", "произведение", "частное":

1) 12 + 16  сумма чисел 12 и 16
2) 39 − 24   разность чисел 39 и 24
3) 18 * 19   произведение чисел 18 и 19
4) 98 : 14   частное чисел 98 и 14
5) (238 + 124) − 95   разность суммы чисел 238 и 124 и числа 95
6) 39 * 16 + 48 * 2   сумма произведения чисел 39 и 16 и произведения чисел 48 и 2
7) 204 : 6 − 10 : 3   разность частного чисел 204 и 6 и частного чисел 102 и 3
8) (53 + 38) * (53 − 38)   произведение суммы чисел 53 и 38 и их разности

242. Найдите значение выражения:
1) 56 + 42 : 14 − 7;
2) (56 + 42) : (14 − 7);
3) (56 + 42) : 14 − 7;
4) 56 + 42 : (14 − 7).

1) 56 + 42 : 14 − 7 = 56 + 3 − 7 = 59 − 7 = 52
2) (56 + 42) : (14 − 7) = 98 : 2 = 49
3)(56 + 42) : 14 − 7 = 98 : 14 − 7 = 7 − 7 = 0
4) 56 + 42 : (14 − 7) = 56 + 42 : 7 = 56 + 6 = 62

66

ГДЗ от 7gy.ru  к странице 66

243. Найдите значение выражения:
1) 374 + x, если х = 268;
2) 374 − x, если х = 268;
3) a + b + 988, если a = 836, b = 442;
4) a − 314 + 625 − с, если a = 836, c = 442.

1) 374 + 268 = 642
2) 374 − 268 = 106
3) 714 + 569 + 988 = 2271
4) 836 − 314 + 625 − 442 = 836 − (314 + 442) + 625 = 836 − 756 + 625 = 80 + 625 = 705

244. Найдите значение выражения:
1) y + 653, если y = 894;
2) y − 653, если y = 894;
3) a − b − 569, если a = 2316, b = 1495.

y + 653, при y = 894: 894 + 653 = 1547
y − 653, при y = 894: 894 − 653 = 241
a − b − 569, при a = 2316, b = 1495: 2316 − 1495 − 596 = 252

245. В классе учатся a мальчиков и 14 девочек. Сколько всего учащихся в этом классе?

Ответ: a + 14 учащихся в этом классе.

246. В саду растет 158 деревьев, из них a деревьев составляют яблони, а остальные − вишни. Сколько вишневых деревьев растет в саду?

Ответ: 158 − a вишневых деревьев.

247. За 8 ч самолет пролетел s км. С какой скоростью летел самолет?

Решение

V=s/t
При t = 8 V=s/8 (км/ч)
Ответ: s/8 км/ч скорость самолёта.

248. Автомобиль проехал s км со скоростью 65 км/ч. Сколько времени автомобиль был в пути?

Решение

t=s/V
При V = 65 км/ч t=s/65 (ч)
Ответ: s/65 ч автомобиль бы в пути.

249. Найдите по формуле пути расстояние, которое пройдет поезд за 6 ч, двигаясь со скоростью 67 км/ч.

Решение

S = V * t
S = 67 * 6 = 402 (км)
Ответ: 402 км пройдет поезд за 6 ч.

250. Найдите по формуле пути расстояние, которое проплывет моторная лодка за 7 ч, двигаясь со скоростью 32 км/ч.

Решение

S = V * t
S = 32 * 7 = 224 (км)
Ответ: 224 км проплывет моторная лодка за 7 ч.

251. Вычислите значение y по формуле y = 4x − 7, если:
1) x = 26;

y = 4 * 26 − 7 = 104 − 7 = 97

2) х = 15.

y = 4 * 15 − 7 = 60 − 7 = 53

252. Вычислите значение a по формуле a = 86 − 5b, если:
1) b = 17

a = 86 − 5b = 86 − 5 * 17 = 86 − 85 = 1

2) b = 9.

 a = 86 − 5b = 86 − 5 * 9 = 86 − 45 = 41

253. Составьте числовое выражение и найдите его значение:
1) разность суммы чисел 238 и 416 и числа 519;
2) сумма разности чисел 823 и 374 и разности чисел 3477 и 3086;
3) произведение суммы и разности чисел 15 и 12;
4) частное суммы чисел 209 и 193 и разности чисел 42930 и 42924.

1) (238 + 416) − 519 = 654 − 519 = 135
2) (823 − 374) + (3477 − 3086) = 840
3) (15 + 12) * (15 − 12) = 27 * 3 = 81
4) (209 + 193) : (42930 − 42924) = 67

254. Составьте числовое выражение и найдите его значение:
1) сумма разности чисел 238 и 149 и числа 506;
2) частное суммы и разности чисел 48 и 16;
3) произведение суммы чисел 124 и 126 и разности чисел 313 и 307;
4) разность произведения чисел 32 и 15 и частного чисел 896 и 28.

1) (238 − 149) + 506 = 595
2) (48 + 16) : (48 − 16) = 64 : 32 = 2
3) (124 + 126) * (313 − 307) = 250 * 6 = 1500
4) 32 * 15 − 896 : 28 = 448

255. Упростите выражение и найдите его значение:
1) 476 + a + 224, если a = 221;
2) x + 246 − 46, если x = 137;
3) 973 − 243 − y, если y = 258.

476 + a + 224 = (476 + 224) + a = 700 + a = 700 + 221 = 921
x + 246 − 46 = (246 − 46) + x = 200 + x = 200 + 137 = 337
973 − 243 − y = (973 − 243) − y = 730 − y = 730 − 258 = 472

256. Упростите выражение и найдите его значение:
1) 2318 + b + 6682, если b = 5195;
2) 829 − 329 + m, если m = 700.

2318 + b + 6682 = (2318 + 6682) + b = 9000 + b = 9000 + 5195 = 14195
829 − 329 + m = (829 − 329) + m = 500 + m = 500 + 700 = 1200

67

Ответы 7gy.ru, страница 67

257. На первом участке росло 67 кустов смородины. Потом x кустов пересадили на второй участок, а на первый посадили y новых кустов. Сколько кустов стало на первом участке? Вычислите значение полученного выражения, если х = 18, y = 25.

Решение

На первом участке стало (67 − х + y) кустов.
Если х = 18, y = 25, то 67 − х + y = 67 − 18 + 25 = 74 (к.)
Ответ: (67 − х + y) кустов, 74 куста.

258. У Винни−Пуха было m горшочков меда. Пятачок подарил ему еще 24 горшочка, и они вместе съели n горшочков меда. Сколько горшочков меда осталось после этого у Винни−Пуха? Вычислите значение полученного выражения, если m = 56, n = 12.

Решение

Количество горшочков меда (m + 24 − n) шт.
Если m = 56, n = 12, то m + 24 − n = 56 + 24 − 12 = 80 − 12 = 68 (шт.)
Ответ: (m + 24 − n) горшочков, 68 горшочков.

259. Пьеро купил m карандашей по 24 сольдо и пять тетрадей по n сольдо, заплатив за тетради больше, чем за карандаши. На сколько больше заплатил Пьеро за тетради, чем за карандаши? Вычислите значение полученного выражения при m = 6, n = 32.

Решение

Пьеро заплатил больше на (5n − 24m) сольдо.
Если m = 6, n = 32, то 5n − 24m = 5 * 32 − 24 * 6 = 160 − 144 = 16 (c.)
Ответ: на (5n − 24m) сольдо, на 16 cольдо.

260. Мальвина Купила 8 конфет по a сольдо и b пирожных по 65 сольдо, заплатив за конфеты меньше, чем за пирожные. На сколько меньше заплатила Мальвина за конфеты, чем за пирожные? Вычислите значение полученного выражения при a = 14, b = 4.

Решение

Разница между стоимостью пирожных и стоимостью конфет (65b − 8a) сольдо
Если a = 14, b = 4, то 65b − 8a = 65 * 4 − 8 * 14 = 250 − 112 = на 148 (с.) 
Ответ: на (65b − 8a) сольдо, на 148 сольдо.

261. В цистерне было 712 л воды. Каждый час из нее вытекает 18 л. Составьте формулу для вычисления объема воды, которая осталась в цистерне через t ч, и вычислите этот объем, если:
1) t = 4;
2) t = 12.

Решение

Пусть V − объем воды, которая осталась в цистерне
V = 712 − 18t
1) Если t = 4, то V = 712 − 18 * 4 = 712 − 72 = 640
2) Если t = 4, то V =  712 − 18 * 12 = 712 − 216 = 496
Ответ: V = 712 − 18t, 640 л, 496 л.

262. Илья разложил по m марок из шести альбомов, и еще 12 марок у него осталось. Составьте формулу для вычисления количества марок, которые есть у Ильи, и вычислите это количество, если:
1) m = 18;
2) m = 36.

Пусть k − количество марок, которые есть у Ильи, тогда:
k = 6m + 12
1) Если m = 18, то k = 6 * 18 + 12 = 108 + 12 = 120
2) Если m = 36, то k = 6 * 36 + 12 = 216 + 12 = 228 
Ответ: 120 марок, 36 марок.

263. Точки A, B и C лежат на одной прямой. Расстояние между A и B равно 30 см, а между точками B и C − 10 см. Найдите расстояние между точками A и C.

1)AB = 30 см, BC = 10 см.
AC = AB + BC = 30 + 10 = 40 см
2)AB = 30 см, BC = 10 см.
AC = AB − BC = 30 − 10 = 20 см

68

Страница 68

264. Наташа купила художественный альбом за 630 р. и несколько сборников стихов по 60 р. каждый. Сколько сборников купила Наташа, если за всю покупку она заплатила 990 р.?

Решение

990 − 630 = 360 (руб.) - потратила Наташа на сборники стихов
360 : 60 = 6 (сб.) - стихов купила Наташа
Ответ: 6 сборников стихов.

265. Масса полного ящика с яблоками составляет 25 кг. После того, как продали половину яблок, масса ящика с оставшимися яблоками оказалась равной 15 кг. Какова масса пустого ящика?

Решение

25 − 15 = 10 (кг) - яблок продали
10 * 2 = 20 (кг) - яблок было всего в ящике
25 − 20 = 5 (кг) - масса пустого ящика.
Ответ: 5 кг.

266. Кабинки развлекательного аттракциона "Колесо обозрения" (рис. 68) последовательно пронумерованы числами 1, 2, 3, и т.д. Сколько всего кабинок, если известно, что когда кабинка с номером 24 занимает самую высокую позицию, то кабинка с номером 10 − самую низкую?

Решение

Колесо имеет форму круга.
Посчитаем количество кабинок половины круга:
когда кабинка № 24 наверху, а кабинка № 10 внизу, то между ними находится 13 кабинок с правой стороны и столько же с левой стороны, следовательно:
13 * 2 = 26 кабинок находится между кабинками № 24 и № 10.
26 + 2 = 28 кабинок всего на аттракционе.

71

Параграф 10. ГДЗ к теме учебника математики Уравнения 5 класс, Мерзляк

Ответы 7gy.ru, страница 71

267. Какое из чисел 3, 12, 14 является корнем уравнения: 1) х + 16 = 28; 2) 4х − 5 = 7?

х + 16 = 28
х = 28 − 16
х = 12

4х − 5 = 7
4х = 7 + 5
х = 12 : 4
х = 3

72

Страница 72

268. Какое из чисел 3, 12, 14 является корнем уравнения: 1) 234 − y = 220; 2) 72 : b + 13 = 19?

234 − y = 220
y = 234 − 220
y = 14
234 − 14 = 220
220 = 220
Ответ: у=14

72 : b + 13 = 19
72 : b = 19 − 13
b = 72 : 6
b = 12
72 : 12 + 13 = 19
19 = 19
Ответ: b =12

269. Решите уравнение:
1) x + 34 = 76;
2) 238 + y = 416;
3) a + 157 = 324;
4) 356 + b = 782;
5) x − 546 = 216;
6) 206 − y = 139;
7) 895 − a = 513;
8) m − 2092 = 1067.

x + 34 = 76
х = 76 − 34
х = 42
Ответ: 42.

238 + y = 416
y = 416 − 238
y = 178
Ответ: 178

a + 157 = 324
a = 324 − 157
a = 167
Ответ:  167

356 + b = 782
b = 782 − 356
b = 426
Ответ: 426

x − 546 = 216
x = 216 + 546
x = 760
Ответ: 760

206 − y = 139
y = 206 − 139
y = 67
Ответ: 67

895 − a = 513
a = 895 − 513
a = 382
Ответ: 382

m − 2092 = 1067
m = 1067 + 2092
m = 3159
Ответ: 3159

270. Решите уравнение:
1) x + 48 = 94;
2) 234 + y = 452;
3) x − 174 = 206;
4) 378 − b = 165.

x + 48 = 94
x = 94 − 48
x = 46
Ответ: 46

234 + y = 452
y = 452 − 234
у = 218
Ответ: 218

x − 174 = 206
x = 206 + 174
x = 380
Ответ: 380

378 − b = 165
b = 378 − 165
b = 213
Ответ: 213

271. Решите уравнение:
1) (134 + x) − 583 = 426;
2) (208 + x) − 416 = 137;
3) (x − 506) + 215 = 429;
4) (y − 164) + 308 = 500;
5) (942 − a) − 126 = 254;
6) (801 − b) − 224 = 368;
7) 475 − (x − 671) = 325;
8) 972 − (y − 504) = 284;
9) 403 − (634 − a) = 366;
10) 643 − (581 − b) = 292;
11) 987 − (x + 364) = 519;
12) 3128 − (m + 425) = 1509.

(134 + x) − 583 = 426
x = 426 − 134 + 583
x = 292 + 583
x = 875
Ответ: 875

(208 + x) − 416 = 137
x = 137 − 208 + 416
x = 135 + 210
x = 345
Ответ: 345

(x − 506) + 215 = 429
x = 429 + 506 − 215
x = 429 + 291
x = 720
Ответ: 720

(y − 164) + 308 = 500
y = 500 + 164 − 308
y = 664 − 308
y = 356
Ответ: 356

(942 − a) − 126 = 254
a = 942 − 254 − 126
a = 688 − 126
a = 562
Ответ: 562

(801 − b) − 224 = 368
b = 801 − 224 − 368
b = 801 − 592
b = 209
Ответ: 209

475 − (x − 671) = 325
475 − x + 671 = 325
x = 475 + 671 − 325
x = 150 + 671
x = 821
Ответ: 821

972 − (y − 504) = 284
y = 972 + 504 − 284
y = 1476 − 284
y = 1192
Ответ: 1192

403 − (634 − a) = 366
a = 366 − 403 + 634
a = 1000 − 403
a = 597
Ответ: 597

643 − (581 − b) = 292
b = 292 + 581 − 643
b = 873 − 643
b = 230
Ответ: 230

987 − (x + 364) = 519
x = 987 − 364 − 519
x = 623 − 519
x = 104
Ответ: 104

3128 − (m + 425) = 1509
m = 3128 − 425 − 1509
m = 2703 − 1509
m = 1194
Ответ: 1194

272. Решите уравнение:
1) (39 + x) − 84 = 78;
2) (x − 83) + 316 = 425;
3) (600 − x) − 92 = 126;
4) 253 − (x − 459) = 138;
5) 502 − (217 − x) = 421;
6) 871 − (x + 157) = 385.

(39 + x) − 84 = 78
x = 78 + 84 − 39
x = 162 − 39
x = 123
Ответ: 123

(x − 83) + 316 = 425
x − 83 = 425 − 316
x = 109 + 83
x = 192
Ответ: 192

(600 − x) − 92 = 126
600 − x = 126 + 92
x = 600 − 218
x = 382
Ответ: 382

253 − (x − 459) = 138
x − 459 = 253 − 138
x = 115 + 459
x = 574
Ответ: 574

502 − (217 − x) = 421
217 − x = 502 − 421
217 − x = 81
x = 217 − 81
x = 136
Ответ: 136

871 − (x + 157) = 385
x + 157 = 875 − 385
x = 486 − 157
x = 329
Ответ: 329

273. Решите с помощью уравнения задачу.
1) Оксана задумала число. Если к этому числу прибавить 43 и полученную сумму вычесть из числа 96, то получим число 25. Какое число задумала Оксана?

Пусть задуманное число x, тогда:
96 − (x + 43) = 25
x + 43 = 96 − 25
x + 43 = 71
x = 71 − 43
x = 28
Ответ: Оксана задумала число 28.

2) У Буратино было 74 сольдо. После того как он купил себе учебники для школы , папа Карло дал ему 25 сольдо. Тогда у Буратино стало 68 сольдо. Сколько сольдо потратил Буратино на учебники?

Пусть x − количество сольдо, потраченное Буратино на учебники, тогда:
(74 − x) + 25 = 68
74 − х = 68 − 25
74 − x = 43
x = 74 − 43
x = 31
Ответ: 31 сольдо потратил Буратино на учебники.

73

Ответы 7gy.ru, страница 73

274. Решите с помощью уравнения задачу. Ваня задумал число. Если к этому числу прибавить 27 и из полученного суммы вычесть 14, то получим 36. Какое число задумал Ваня?

Решение

Пусть х − число, задуманное Ваней, тогда:
(x + 27) − 14 = 36
x + 27 = 36 + 14
x = 50 − 27
x = 23
Ответ: 23 - число, задуманное Ваней.

275. Какое число надо подставить вместо a, чтобы корнем уравнения:
1) (x + a) − 7 = 42 было число 22;

(x + a) − 7 = 42, при x = 22 равно:
(22 + a) − 7 = 42
22 + a = 42 + 7
a = 49 − 22
a = 27
Ответ: 27

2) (a − x) + 4 = 15 было число 3?

(a − x) + 4 = 15, при x = 3 равно:
(a − 3) + 4 = 15
a − 3 = 15 − 4
a = 11 + 3
a = 14
Ответ: 14

276. Какое число надо подставить вместо a, чтобы корнем уравнения:
1) (x − 7) + a = 23 было число 9;

(x − 7) + a = 23, при x = 9 равно:
(9 − 7) + a = 23
2 + a = 23
a = 23 − 2
a = 21
Ответ: 21

2) (11 + x) + 101 = a было число 5?

(11 + x) + 101 = a, при x = 5 равно:
(11 + 5) + 101 = a
a = 16 + 101
a = 117
Ответ: 117

277. Лиза была в школе с 8 ч 15 мин до 15 ч 20 мин. Вечером она пошла на тренировку. Там она провела на 5 ч 40 мин меньше времени, чем в школе. Сколько времени Лиза была на тренировке?

Решение

15 ч 20 мин − 8 ч 15 мин = 7 ч 5 мин
7 ч 5 мин − 5 ч 40 мин = 6 ч 65 мин − 5 ч 40 мин = 1 ч 25 мин
Ответ: 1 ч 25 мин Лиза была на тренировке.

278. Начертите отрезок длиной 12 см. Над одним концом отрезка напишите число 0, а над другим − 480. Поделите отрезок на шесть равных частей. Отметьте на полученной шкале числа 40, 100, 280, 360, 420.

279. Можно ли, имея 450 р., купить 3 кг бананов по 42 р. за 1 кг, 2 кг мандаринов по 50 р. за 1 кг и 4 кг апельсинов по 48 р. за 1 кг?

3 * 42 + 2 * 50 + 4 * 48 = 126 + 100 + 192 = 418 (р.) потребуется на покупку всех фруктов, а так как 418 < 450, т осуществить покупку можно.

280. В трёх ящичках лежат шары: в первом ящичке − два белых; во втором ящичке − два черных; в третьем − белый и черный. На ящички наклеены этикетки ББ, ЧЧ, БЧ так, что содержимое каждого из них не соответствует этикетке. Как вынув один шар, узнать, что в каком ящичке лежит?

Решение

По условию несоответствия этикеток:
в ящичке ББ будут либо черные, либо белый и черный шарики;
в ящичке ЧЧ будут либо белые, либо белый и черный шарики;
Нужно взять один шар из ящичка с надписью БЧ:
если шарик в БЧ черный, значит и второй шарик в БЧ черный, а это означает что в ББ черный и белый шарики, а в ЧЧ оба белых шарика;
если шарик в БЧ белый, значит и второй шарик в БЧ белый, а это означает что в ЧЧ черный и белый шарики, а в ББ оба черных шарика.

75

Параграф 11. Угол. Обозначение углов

Страница 75

281. Как можно обозначить угол, изображенный на рисунке 73?

∠MKN, ∠NKM, ∠K.

282. На каком из рисунков 74, а, б, в луч OK является биссектрисой угла AOB?

На рисунке в.

283. Назовите все углы, изображенные на рисунке 75.

∠BAM, ∠BAE, ∠EAM.

284. Запишите все углы, изображенные на рисунке 76.

∠OTF, ∠OTC, ∠CTF.

76

Ответы 7gy.ru, страница 76

285. Какие из лучей, изображенных на рисунке 77, пересекают сторону угла BOC?

Лучи: AK, ST.

286. Какие из лучей, изображенных на рисунке 78, пересекают сторону угла BOC?

Лучи: RP, FE.

287. Начертите ∠MNE и проведите лучи NA и NC между его сторонами. Запишите все образовавшиеся углы.

∠MNE, ∠MNA, ∠ANC, ∠CNE, ∠MNC, ∠ANE.

288. На рисунке 79 ∠ABE = ∠CBF. Есть ли еще на этом рисунке равные углы?

∠ABF = ∠CBE

289. На рисунке 80 ∠AOB = ∠DOE, ∠BOC = ∠COD. Есть ли еще на этом рисунке равные углы?

∠AOC = ∠EOC, ∠AOD = ∠EOB.

290. На рисунке 81 углы FOK и MOE равны. Какие еще углы, изображенные на этом рисунке, равны?

∠FOM = ∠EOK

291. Составьте числовое выражение и найдите его значение:
1) произведение суммы чисел 18 и 20 и числа 8;

(18 + 20) * 8 = 38 * 8 = 304

2) частное от деления разности чисел 128 и 29 на число 11;

(128 − 29) : 11 = 99 : 11 = 9

3) частное от деления произведения чисел 15 и 6 на их разность.

15 * 6 : (15 − 6) = 90 : 9 = 10

77

ГДЗ от 7gy.ru  к странице 77

292. Решите уравнение: 1) x + 504968 = 1017216; 2) 120340526 − x = 7908049.

x + 504968 = 1017216
х = 1017216 − 504968
х = 512248
512248 + 504968 = 1017216
1017216 = 1017216
Ответ: х = 512248

_1017216
    504968
    512248

120340526 − x = 7908049
х = 120340526 − 7908049
х = 112432477
120340526 − 112432477 = 7908049
7908049 = 7908049
Ответ: х = 112432477

_120340526
      7908049
  112432477

293. На XXIX Олимпийских играх, состоявшихся в 2008 г. в Пекине (Китай), олимпийская сборная России завоевала 73 медали. Наши спортсмены получили 44 золотых и серебряных медали, а золотых и бронзовых − 52. Сколько медалей каждого вида завоевала на этой олимпиаде наша сборная?

Решение

73 − 52 = 21 (м.) - серебряную
44 − 21 = 23 (м.) - золотых
52 − 23 = 29 (м.) - бронзовых
Ответ: 21,23 и 29 медалей.

294. Учащиеся пятых классов ехали на двух автобусах на экскурсию. Когда из одного автобуса, в котором было 42 учащихся, восемь учащихся перешли во второй автобус, то в обоих автобусах учащихся стало поровну. Сколько учащихся было сначала?

Решение

42 − 8 = 34 (уч.) - стало во втором автобусе
34 − 8 = 26 (уч.) - было во втором автобусе
Ответ: 26 учащихся.

295. На озере начали распускаться кувшинки. Каждый день количество кувшинок возрастало вдвое. На двадцатый день кувшинками заросла вся поверхность озера. На какой день половина озера была покрыта кувшинками?

Ответ: половина озера была покрыта кувшинками на 19−й день (на 20−й день число удвоилось и озеро заросло полностью).

81

Параграф 12. ГДЗ к теме учебника математики Виды углов. Измерение углов 5 класс, Мерзляк

Ответы 7gy.ru, страница 81

296. Начертите:
1) острый угол EFC;
2) прямой угол ORT;
3) тупой угол D;
4) развернутый угол KAP.

297. Найдите на рисунке 93 острые, тупые и прямые углы.

Острые углы: ∠ACM, ∠CMK, ∠TPO;
Тупые углы: ∠AKM, ∠PTQ, ∠TQO;
Прямые углы: ∠CAK, ∠POQ.

298. Какие из данных углов острые, тупые, прямые, развернутые:
∠A = 96°; ∠B = 84°; ∠S = 180°; ∠D = 90°; ∠R = 162°; ∠E = 60°; ∠Q = 100°; ∠M = 72°?

Острые углы: ∠B = 84°; ∠E = 60°; ∠M = 72°;
Тупые углы: ∠A = 96°; ∠R = 162°; ∠Q = 100°;
Прямые углы: ∠D = 90°;
Развернутый углы: ∠S = 180°.

82

Страница 82

299. Найдите, пользуясь транспортиром, градусные меры углов, изображенных на рисунке 94. Определите вид каждого угла.

∠AMK = 28° − острый;
∠CTF = 33° − острый;
∠POB = 120° − тупой;
∠SNE = 125° − тупой.

300. Найдите, пользуясь транспортиром, градусные меры углов, изображенных на рисунке 95. Определите вид каждого угла.

∠PRT = 133° − тупой;
∠EFM = 40° − острый;
∠BCQ = 110° − тупой;
∠AKS = 67° − острый.

301. Начертите угол градусная мера которого равна:
1) 38°; 2) 124°; 3) 92°; 4) 90°; 5) 87°; 6) 54°; 7) 170°; 8) 65°.
Определите вид каждого угла.

Проводим луч ОА. Откладываем углы АОВ, отмеряя по транспортиру с вершиной в точке О.

∠AOB = 124° − тупой
∠AOB = 92° − тупой
∠AOB = 90° − прямой
∠AOB = 87° − острый
∠AOB = 54° − острый
∠AOB = 170° − тупой
∠AOB = 65° − острый

302. Проведите луч. Отложите от этого луча угол, градусная мера которого равна:
1) 40°; 2) 130°; 3) 68°; 4) 164°.
Определите вид каждого из построенных углов.

∠AOB = 40° − острый
∠COB = 130° − тупой
∠DOB = 68° − тупой
∠EOB = 164° − тупой

303. На рисунке 96 ∠CMK = 132°, а угол AMK − развернутый. Вычислите величину угла AMC.

∠AMC = ∠AMK − ∠CMK = 180° − 132° = 48°

304. На рисунке 97 угол AOK − прямой, ∠POC = 54°, а угол COK − развернутый. Вычислите величину угла AOP.

∠AOP = ∠COK − ∠AOK − ∠POC = 180° − 90° − 54° = 36°

83

ГДЗ от 7gy.ru  к странице 83

305. Какой из углов, изображенных на рисунке 98, наибольший? Наименьший?

∠C − наибольший;
∠D − наименьший.

306. Начертите угол CDE, равный 152°. Лучом DA разделите этот угол на два угла так, чтобы ∠CDA = 98°. Вычислите величину угла ADE.

∠ADE = ∠CDE − ∠CDA
∠ADE = 152° − 98° = 54°

307. Начертите угол ABC, равный 106°. Лучом BD разделите этот угол на два угла так, чтобы ∠ABD = 34°. Вычислите величину угла DBC.

∠DBC = ∠ABC − ∠ABD
∠DBC = 106° − 34° = 72°

308. Из вершины прямого угла BOM (рис.99) проведены два луча OA и OC так, что ∠BOC = 74°, ∠AOM = 62°. Вычислите величину угла AOC.

∠AOB = ∠BOM − ∠AOM = 90° − 62° = 28°;
∠COM = ∠BOM − ∠COB = 90° − 74° = 16°;
∠AOC = ∠BOM − ∠AOB − ∠COM = 90° − 28° − 16° = 46°.

309. Из вершины развернутого угла ACP (рис.100) проведены два луча CT и CF так, что ∠ACF = 158°; ∠TCP = 134°. Вычислите величину угла TCF.

∠ACT = ∠ACP − ∠TCP = 180° − 134° = 46°;
∠FCP = ∠ACP − ∠ACF = 180° − 158° = 22°;
∠TCF = ∠ACP − ∠ACT − ∠FCP = 180° − 46° − 22° = 112°.

310. Верно ли утверждение:

1) угол, который меньше тупого, − острый; Не верно, так как прямой угол тоже меньше тупого, как и острый.
2) угол, который меньше развернутого, − тупой; Не верно, так как меньше развернутого может быть и тупой, и острый, и прямые углы.
3) половина тупого угла − острый угол; Верно.
4) сумма градусных мер двух острых углов больше 90°; Не верно, может быть и меньше 90°.
5) угол, который больше прямого, − тупой? Не верно: больше прямого может быть тупой и развернутой угол.

311. Найдите градусную меру угла между стрелками часов, если они показывают:

1) 3 ч - 90°
2) 6 ч - 180°
3) 4 ч - 120°
4) 11 ч - 30°
5) 7 ч - 150°

84

Ответы 7gy.ru, страница 84

312. Луч BK является биссектрисой угла CBD, ∠ABK = 146° (рис.101,а). Вычислите градусную меру угла CBD.

∠KBC = ∠ABC − ∠ABK = 180° − 146° = 34°
∠CBD = 2 * ∠KBC = 2 * 34° = 68°

313. Луч OA является биссектрисой угла COM, ∠COM = 54° (рис.101,б). Вычислите градусную меру угла BOA.

∠MOA = ∠COM : 2 = 54° : 2 = 27°
∠BOM = ∠BOC − ∠COM = 180° − 54° = 126°
∠BOA = ∠MOA − ∠BOM = 27° + 126° = 153°

314. Проведите три прямые, пересекающиеся в одной точке. Запишите все развернутые углы, образовавшиеся при этом.

Развернутые углы: ∠AOD, ∠BON, ∠MOC.

315. Проведите шесть прямых, пересекающихся в одной точке. Верно ли, что среди образовавшихся при этом углов есть угол, градусная мера которого меньше 31°?

Верно, так как 360° : 12 = 30°

316. Заполните цепочку вычислений:

4 см -> 1200см -> 1080 см -> 120 см -> 420 см.

120 мин -> 4 ч -> 40 мин -> 39 мин 6 с.

317. Верно ли неравенство (a + 253) * 7 < (9864 − a) : 4 при a = 124?

(124 + 253) * 7 < (9864 − 124) : 4
377 * 7 < 9740 : 4
2639 < 2325 неверно
неравенство при a = 124 неверно.

318. В четыре стакана помещается столько же молока, сколько и в банку. В стакан и банку помещается 1 кг 200 г молока. Сколько грамм молока помещается в стакан?

Решение

4 стакана = 1 банка, следовательно банка + стакан = 4 + 1 = 5 стаканов.
1 кг 200 г = 1200 г : 5 = 240 (г) умещается в один стакан.
Ответ: 240 г.

319. Длина сухопутной границы России с Китаем, Монголией и Казахстаном составляет 15 293 км. Найдите длину границы России с каждым из этих государств, если длина границы с Китаем и Монголией равна 7694 км, а с Китаем и Казахстаном − 11808 км.

Решение

15293 − 7964 = 7599 (км) длина границы с Казахстаном

_15293
    7964
    7599

15293 − 11808 = 3485 (км) длина границы с Монголией

_15293
  11808
    3485

7599 + 3485 = 11084 (км) длина границы с Казахстаном и Монголией вместе

+7599
  3485
11084

15293 − 11084 = 4209 (км) длина границы с Китаем

_15293
  11084
    4209

Ответ: 7599 км,  3485 км, 11084 км, 4209 км.

85

Страница 85

320. Улитка за день поднимается вверх по столбу на 3 м, а за ночь съезжает на 2 м вниз. На какой день она доберется до вершины столба, высота которого равна 20 м?

Решение

3 − 2 = 1 (м) - высота подъема улитки в сутки.
За 17 суток улитка поднимется на 17 метров.
На 18 день улитка поднимется на 3 метра и достигнет 17 + 3 = 20 м, то есть вершины столба.
Ответ: на 18-й день.

87

Параграф 13. ГДЗ к теме учебника Многоугольники. Равные фигуры

Ответы 7gy.ru, страница 87

321. Назовите вершины и стороны пятиугольника, изображенного на рисунке 109.

Вершины: M, N, K, P, E.
Стороны: MN, NK, KP, PE, EM.

322. Начертите:
1) четырехугольник; 2) пятиугольник; 3) шестиугольник; 4) семиугольник.

323. Вычислите периметр пятиугольника, стороны которого равны 2 см, 4 см, 5 см 5 мм, 6 см, 7 см.

Р = 2 см + 4 см + 5 см 5 мм + 6 см + 7 см = 24 см 5 мм

324. Вычислите периметр шестиугольника, три стороны которого равны по 8 см, а три другие − по 10 см.

Р = 3 * 8 + 3 * 10 = 24 + 30 = 54 см

325. Нарисуйте в тетради фигуру, равную той, которая изображена на рисунке 110.

Перечерчиваем фигуры в тетрадь.

88

Страница 88

326. Нарисуйте в тетради фигуру, равную той, которая изображена на рисунке 111.

Перечерчиваем фигуры в тетрадь.

327. Одна из сторон четырех угольника равна 8 см, вторая сторона в 3 раза больше первой, а третья − на 7 см меньше второй и на 9 см больше четвертой. Вычислите периметр четырехугольника.

Решение

8 * 3 = 24 (см) - длина второй стороны
24 − 7 = 17 (см) - длина третьей стороны
17 − 9 = 8 (см) - длина четвертой стороны
Р = 8 + 24 + 17 + 8 = 57 (см)
Ответ: 57 см.

328. Стороны пятиугольника пронумеровали. Первая сторона равна 4 см, а каждая следующая сторона на 2 см длиннее предыдущей. Вычислите периметр пятиугольника.

4 + 2 = 6 (см) - длина второй стороны
6 + 2 = 8 (см) - длина третьей стороны
8 + 2 = 10 (см) - длина четвертой стороны
10 + 2 = 12 (см) - длина пятой стороны
Р = 4 + 6 + 8 + 10 + 12 = 40 (см)
Ответ: 40 см.

329. 1) Сколько диагоналей можно провести из одной вершины: а) пятиугольника; б) девятиугольника; в) n − угольника, где n > 3?
2) Сколько всего диагоналей можно провести: а) в пятиугольнике; б) в девятиугольнике: в) n − угольнике, где n > 3?

1)
а) Всего вершин 5 − (исходная вершина) − (2 вершины, лежащие с исходной на одной стороне) = 2, то есть в пятиугольнике из одной вершины можно провести только две диагонали;
б) Всего вершин 9 − (исходная вершина) − (2 вершины, лежащие с исходной на одной стороне) = 6, то есть в девятиугольнике из одной вершины можно провести только 6 диагоналей;
в) Всего вершин n − (исходная вершина) − (2 вершины, лежащие с исходной на одной стороне) = n − 3, то есть в n − угольнике из одной вершины можно провести только n − 3 диагоналей.

2)
а) Из каждой вершины пятиугольника можно провести по 2 диагонали, одна (половина) из которых будет совпадать с диагональю от другой вершины, следовательно: (5 * 2) : 2 = 5 диагоналей можно провести в пятиугольнике;
б) Из каждой вершины девятиугольника можно провести по 6 диагоналей, половина из которых будет совпадать с диагоналями от другой вершины, следовательно: (9 * 6) : 2 = 27 диагоналей можно провести в девятиугольнике;
в) Из каждой вершины n − угольника можно провести по n − 3 диагоналей, половина из которых будет совпадать с диагоналями от другой вершины, следовательно: ( n * ( n − 3 ) ) : 2 = ( n*n − 3 n ) : 2 диагоналей можно провести в n − угольнике.

330. Как используя шаблон угла, градусная мера которого равна 13°, построить угол, градусная мера которого равна 2°?

Отложим от производного луча шаблоном угла последовательно угол 14 раз: 14 * 13° = 182°
Полученный таким образом угол больше развернутого на 2°.

331. Как построить угол, градусная мера которого равна 1°, используя шаблон угла, градусная мера которого равна:
а) 19°;

Отложим от производного луча шаблоном угла последовательно угол 19 раз: 19 * 19° = 361°.
Полученный угол больше угла 360° на 1°.

б) 7°?

Отложим от производного луча шаблоном угла последовательно угол 13 раз: 13 * 7° = 91°.
Полученный угол больше прямого угла на 1°.

332. Существует ли многоугольник с периметром, равным 1000000 см, который можно целиком расположить в квадрате со стороной 1см?

Существует. Это многоугольник в виде звезды с очень большим количеством лучей.

333. Сравните: 1) 3986 г и 4 кг; 2) 6 м и 712 см; 3) 60 см и 602 мм; 4) 999 кг и 10 ц.

                4000 г   
1) 3986 г < 4 кг 

  600 см
2) 6 м < 712 см

  600 мм
3) 60 см  < 602 мм

                  1000 кг
4) 999 кг < 10 ц

89

Ответы 7gy.ru, страница 89

334. Выполните сложение, выбирая удобный порядок вычислений:

1) (636 + 927) + 364 = (636 + 364) + 927 = 1000 + 927 = 1927
2) (425 + 798) + 675 = (425 + 675) + 798 = 1100 + 798 = 1898
3) 212 + 493 + 788 + 807 = (212 + 788) + (493 + 807) = 1000 + 1300 = 2300
4) 161 + 455 + 839 + 945 = (161 + 839) + (455 + 945) = 1000 + 1400 = 2400

335. Известно, что ∠ABC = 74°, а луч BD − его биссектриса. Вычислите величину угла DBC.

Биссектриса делит угол пополам, следовательно:
∠DBC = ∠ABC : 2 = 74° : 2 = 37°

336. Высота самой высокой горы Европы Монблан равна 4807 м. Она на 2153 м ниже самой высокой горы Южной Америки Аконкагуа, которая на 767 м выше самой высокой горы Северной Мак−Кинли. Какова высота самой высокой горы Африки Килиманджаро, если она на 298 м ниже горы Мак−Кинли? Какова высота самой высокой горы мира Эверест (рис.112), если она на 2953 м выше горы Килиминджаро?

Решение

1) 4807 + 2153 = 6960 (м) - высота горы Аконкагуа
2) 6960 − 767 = 6193 (м) - высота горы Мак−Кинли
3) 6193 − 298 = 5895 (м) - высота горы Килиманджаро
4) 5895 + 2953 = 8848 (м) - высота Эвереста
Ответ: 8848 м.

337. Лимоны одинаковой массы продают поштучно. Масса каждого лимона составляет целое количество граммов. Купили больше двух, но меньше семи лимонов. Масса всей покупки составляет 850 г. Какова масса одного лимона?

Решение

850 без остатка делится только на 5, поэтому купили 5 лимонов.
850 : 5 = 170 (г.) масса одного лимона
Ответ: 170 г.

92

Параграф 14. Треугольник и его виды

Страница 92

338. Определите вид треугольника, изображенного на рисунке 121, в зависимости от вида его углов и количества равных сторон.

а. Остроугольный разносторонний
б. Прямоугольный разносторонний
в. Остроугольный равнобедренный
г. Тупоугольный равнобедренный
д. Тупоугольный разносторонний
е. Прямоугольный равнобедренный

339. Начертите:
1) разносторонний остроугольный треугольник;
2) равнобедренный прямоугольный треугольник;
3) равнобедренный тупоугольный треугольник.

93

Страница 93

340. Начертите:
1) разносторонний прямоугольный треугольник;
2) разносторонний тупоугольный треугольник;
3) равнобедренный остроугольный треугольник.

341. Найдите периметр треугольника со сторонами 16 см, 22 см и 28 см.

Р = 16 + 22 + 28 = 66 см

342. Найдите периметр треугольника со сторонами 14 см, 17 см и 17 см.

Р = 14 + 17 + 17 = 48 см

343. Начертите произвольный треугольник, измерьте его стороны и углы, найдите периметр и сумму углов этого треугольника.

∠ABC = 90°
∠BCA = 45°
∠CAB = 45°
AB = 3 см
BC = 3 см
AC = 4 см 24 мм
Р = 3 + 3 + 4,24 = 10,24 (см)

344. Одна сторона треугольника равна 24 см, вторая − на 18 см больше первой, а третья сторона − в два раза меньше второй. Найдите периметр треугольника.

Решение

24 + 18 = 42 (см)  - длина второй стороны треугольника
42 : 2 = 21 (см) - длина третьей стороны треугольника
Р = 24 + 42 + 21 = 87 (см) - периметр треугольника
Ответ: 87 см.

345. Одна сторона треугольника равна 12 см, вторая сторона в 3 раза больше первой, а третья − на 8 см меньше второй. Найдите периметр треугольника.

Решение

12 * 3 = 36 (см)  - длина второй стороны треугольника
36 − 8 = 28 (см) - длина третьей стороны треугольника
Р = 12 + 36 + 28 = 76 (см) - периметр треугольника
Ответ: 76 см.

346. 1) Найдите периметр равнобедренного треугольника, основание которого равно 13 см, а боковая сторона − 8 см.

Так как треугольник равнобедренный, то и вторая боковая сторона равна 8 см, следовательно:
Р = 13 + 8 + 8 = 29 (см)
Ответ: 29 см.

2) Периметр равнобедренного треугольника равен 39 см, а основание − 15 см. Найдите боковые стороны треугольника.

Так как треугольник равнобедренный, то его боковые стороны равны:
39 − 15 = 24 (см) - длина двух боковых сторон треугольника
24 : 2 = 12 (см) - длина каждой боковой стороны треугольника
Ответ: 24 см и 12 см.

347. Периметр равнобедренного треугольника равен 28 см, а боковая сторона − 10 см. Найдите основание треугольника.

Решение

Так как треугольник равнобедренный, то его боковые стороны равны, тогда:
28 − (10 * 2) = 28 − 20 = 8 (см) - длина основания треугольника
Ответ: 8 см.

94

Страница 94

348. Периметр треугольника равен p см, одна сторона − 22 см, вторая сторона − b см. Составьте выражение для нахождения третьей стороны. Вычислите длину третьей стороны, если p = 72, b = 26.

Решение

Пусть третья сторона равна a, тогда:
a = p − 22 − b = 72 − 22 − 26 = 24 (см) - длина третьей стороны треугольника
Ответ: 24 см.

349. Периметр треугольника равен p см, одна сторона − 22 см, вторая сторона − b см. Составьте выражение для нахождения третьей стороны. Вычислите длину третьей стороны, если p = 72, b = 26.

Решение

Третья сторона равна (p − 22 − b )
Если p = 72, b = 26, то 72 − 22 − 26 = 24
Ответ: (p − 22 − b ) см, 24 см длина третьей стороны треугольника.

350. С помощью линейки и транспортира постройте треугольник ABC и укажите его вид, если:
1) две стороны равны 3 см и 6 см, а угол между ними − 40°; Разносторонний тупоугольный
2) две стороны равны 2 см 5 мм и 5 см, а угол между ними − 130°; Разносторонний тупоугольный
3) две стороны равны по 3 см 5 мм, а угол между ними − 54°; Равнобедренный остроугольный
4) сторона AB равна 4 см, а углы CAB и CBA соответственно равны 30° и 70°; Разносторонний остроугольный
5) сторона AB равна 2 см 5 мм, а углы CAB и CBA соответственно равны 100° и 20°; Разносторонний тупоугольный
6) сторона BC равна 5 см, а углы ABC и BCA соответственно равны 30° и 60°; Разносторонний прямоугольный
7) сторона BC равна 5 см 5 мм, а углы ABC и BCA равны по 45°; Равнобедренный прямоугольный
8) сторона AC равна 5 см 5 мм, а углы BAC и BCA равны по 60°. Равносторонний остроугольный

351. С помощью линейки и транспортира постройте треугольник и укажите его вид, если:
1) две стороны равны 3 см и 4 см, а угол между ними − 90°; Разносторонний прямоугольный
2) две стороны равны 4 см 5 мм, а угол между ними − 60°; Остроугольный равносторонний
3) одна сторона равна 6 см, а углы, прилежащие к этой стороне, − 90° и 45°; Равнобедренный прямоугольный
4) одна сторона равна 4 см 5 мм, а углы, прилежащие к этой стороне, − по 35°. Равнобедренный тупоугольный

352. Постройте треугольник, стороны которого содержат четыре точки, изображенные на рисунке 122.

95

Страница 95

353. Сколько треугольников изображено на рисунке 123?

а) 7 треугольников.
б) 18 треугольников.

354. Запишите все углы, изображенные на рисунке 124, и укажите вид каждого угла.

Острые углы: ∠ABM; ∠KBC.
Тупы углы: ∠ABK; ∠MBK; ∠MBC.
Развернутый угол: ∠ABC.

355. Миша делал домашнее задание по математике с 16 ч 48 мин до 17 ч 16 мин, а Дима − с 17 ч 53 мин до 18 ч 20 мин. Кто из мальчиков дольше делал задание и на сколько минут?

Решение

17 ч 16 мин − 16 ч 48 мин = 16 ч 76 мин − 16 ч 48 мин = 28 мин    делал домашнее задание Миша
18 ч 20 мин − 17 ч 53 мин = 17 ч 80 мин − 17 ч 53 мин = 27 мин    делал домашнее задание Дима
28 − 27 = 1
Ответ: на 1 минуту Миша делал домашнее задание дольше, чем Дима.

356. Решите уравнение:
1) 429 + m = 2106;
2) 348 − k = 154;
3) (m + 326) − 569 = 674;
4) 5084 − (k − 299) = 568.

1) 429 + m = 2106,
m = 2106 − 429,
m = 1677.
429 + 1677 = 2106
2106 = 2106
Ответ: m = 1677.

2) 348 − k = 154,
k = 348 − 154,
k = 194.
348 − 194 = 154
154 = 154
Ответ: k = 194.

3) (m + 326) − 569 = 674,
m + 326 = 674 + 569,
m + 326 = 1243,
m = 1243 − 326,
m = 917.
(917 + 326) − 569 = 674
674 = 674
Ответ: m = 917.

4) 5084 − (k − 299) = 568,
k − 299 = 5084 − 568,
k − 299 = 4516,
k = 4516 + 299,
k = 4815.
5084 − (4815 − 299) = 568
568 = 568
Ответ: k = 4815.

357. Вместо звездочек поставьте цифры так, чтобы действие было выполнено правильно.

+74768
  25232
100000

_101230
    45675
    55555

358. Каждый учащийся гимназии изучает по крайней мере один из двух иностранных языков. Английский язык изучают 328 учеников, французский язык − 246 учеников, а английский и французский одновременно − 109 учеников. Сколько всего учеников учится в гимназии?

Пояснение от 7 гуру: эта задача требует знания диаграмм Эйлера - Венна, тогда ее решить проще простого. Если не учили, пытаемся мыслить логически.

Решение

328 − 109 = 219 (уч.) - изучают только английский язык
246 − 109 = 137 (уч.) - изучают только французский язык
219 + 137 + 109 = 465 (уч.) - учится в гимназии всего
Ответ: 465 учеников.

98

Параграф 15. ГДЗ к разделу учебника математики Прямоугольник. Ось симметрии фигуры 5 класс, автор Мерзляк

Ответы 7gy.ru, страница 98

359. Постройте:
1) Прямоугольник, соседние стороны которого равны 4 см и 2 см;
2) квадрат со стороной 3 см.

360. Постройте прямоугольник, соседние стороны которого равны 25 мм и 35 мм.

AB = CD = 2 см 5 мм
BC = AD = 3 см 5 мм

99

Страница 99

361. Вычислите периметр:
1) прямоугольника, соседние стороны которого равны 42 см и 23 см;
2) квадрата со стороной 8 дм.

1) Р = 2 * 42 + 2 * 23 = 84 + 46 = 130 (см)
2) Р = 4 * 8 = 32 (дм)

362. Найдите периметр прямоугольника, соседние стороны которого равны 13 мм и 17 мм.

Р = 2 * 13 + 2 * 17 = 26 + 34 = 60 (мм) = 6 (см)

363. Какие из букв, изображенных на рисунке 135, имеют ось симметрии?

А, В, Е, Т.

364. Сколько осей симметрии имеет многоугольник изображенный на рисунке 136?

а) - 2, б) - 1, в) - 6

365. 1) Длина одной из сторон прямоугольника равна 14 см, что на 5 см больше длины соседней стороны. Найдите периметр прямоугольника.
2) Периметр прямоугольника равен 34 см, а одна из его сторон − 12 см. Найдите длину соседней стороны прямоугольника.

1) 14 − 5 = 9 (см) - длина соседней стороны прямоугольника
     Р = 14 * 2 + 9 * 2 = 28 + 18 = 46 (см)
    Ответ: 46 см.

2) 12 * 2 = 24 (см) - длина двух известных сторон прямоугольника;
    34 − 24 = 10 (см) - длина двух соседних сторон прямоугольника;
    10 : 2 = 5 (см) - длина соседней стороны.
   Ответ: 12 см.

366. Одна сторона прямоугольника равна 8 см, а соседняя − в 4 раза больше. Найдите периметр прямоугольника.

Решение

8 * 4 = 32 (см) - соседняя сторона
Р = 2 * 8 + 2 * 32 = 16 + 64 = 80 (см)
Ответ: 80 см.

367. Квадрат со стороной 12 см и прямоугольник, одна из сторон которого равна 8 см, имеют равные периметры. Найдите неизвестную сторону прямоугольника.

Решение

4 * 12 = 48 (см) - периметр квадрата
8 * 2 = 16 (см) - длина двух известных сторон прямоугольника
48 − 16 = 32 (см) - длина двух неизвестных сторон прямоугольника
32 : 2 = 16 (см) - длина неизвестной стороны прямоугольника
Ответ: 16 см.

368. Прямоугольник, соседние стороны которого равны 42 см и 14 см, и квадрат имеют равные периметры. Найдите длину стороны квадрата.

Решение

Р = 2 * 42 + 2 * 14 = 84 + 28 = 112 (см)  - периметр прямоугольника
112 : 4 = 28 (см) - длина стороны квадрата
Ответ: 28 см.

369. Сколько квадратов изображено на рисунке 137?

а) 14     б) 13

370. Из куска проволоки сделали модель пятиугольника (рис.138). Какие из моделей перечисленных фигур, длины сторон которых выражаются натуральным числом сантиметров, можно сделать из этого куска проволоки:
1) квадрат;
2) пятиугольник, все стороны которого равны;
3) равносторонний треугольник?

Узнаем длину проволоки из которой сделан пятиугольник, найдя его периметр:
P = 6 + 5 + 3 + 2 + 4 = 20 (см)

1) 20 : 4 = 5 (см)
    Из этой проволоки можно сделать квадрат со стороной 5 см.

2) 20 : 5 = 4 (см)
   Из этой проволоки можно сделать пятиугольник, каждая сторона которого равна 4 см.

3) Равносторонний треугольник сделать не получится, так как 20 см не делится на 3 без остатка.

100

Страница 100

371. Прямоугольник ABCD разрезали на квадраты так, как показано на рисунке 139. Сторона наименьшего из квадратов равна 4 см. Найдите длины сторон прямоугольника ABCD.

Решение

Сторона наименьшего квадрата 4 см,
4 * 3 = 12 (см) - сторона наибольшего квадрата
AD = BC = 12 + 12 + 4 = 28 (см)
Стороны AD и BC состоят из 4 средних квадратов
28 : 4 = 7 (см) - сторона среднего квадрата
CD = AB = 7 + 4 * 3 = 19 (см)
Ответ: 28 см и 19 см.

372. Начертите прямоугольник, соседние стороны которого равны 3 см и 6 см. Разделите его на три равных прямоугольника. Вычислите периметр каждого из полученных прямоугольников. Сколько решений имеет задача.

Задача имеет 2 решения:
1) AK = KM = MD = BN = NP = PC = 6 : 3 = 2 (см)
P ABNK = P KNPM = P MPCD = 2 * 2 + 2 * 3 = 10 (см)

2) AK = KM = MD = BN = NP = PC = 3 : 3 = 1 (см)
P ABNK = P KNPM = P MPCD = 2 * 1 + 2 * 6 = 14 (см)

Ответ: 10 см или 14 см.

373. Существует ли среди прямоугольников с периметром 12 см такой, который можно разделить на два равных квадрата? В случае положительного ответа выполните рисунок и вычислите периметр каждого из полученных квадратов.

Решение

Прямоугольник ABCD со сторонами 4 см и 2 см.
Р ABCD = 2 * 2 + 2 * 4 = 4 + 8 = 12 (см)
Разделив прямоугольник пополам получим квадрат со стороной 2 см, периметр которого равен:
Р ABEF = Р FECD = 2 * 4 = 8 (см)
Ответ: 8 см - периметр каждого из квадратов.

374. Как надо разделить квадрат на четыре равные части, чтобы из них можно было сложить два квадрата?

Затем из каждой пары треугольников складываем квадрат.

375. Как надо разрезать равнобедренный прямоугольный треугольник на четыре равные части, чтобы из них можно было сложить квадрат?

376. Как надо разрезать прямоугольник со сторонами 8 см и 4 см на четыре части, чтобы из них можно было сложить квадрат?

377. Как надо разрезать квадрат на треугольник и четырехугольник, чтобы из них можно было сложить треугольник?

Треугольник ставим поверх четырехугольника и получается большой треугольник.

378. Как надо разрезать квадрат со стороной 6 см на две части по ломанной, состоящей из трех звеньев, чтобы из полученных частей можно было сложить прямоугольник?

379. Проведите прямую MK, луч PS и отрезок AB так, чтобы луч пересекал отрезок AB и прямую MK, а прямая MK не пересекала отрезок AB.

380. В магазине имеются лимоны, апельсины и мандарины, всего 740 кг. Если бы продали 56 кг лимонов, 36 кг апельсинов и 34 кг мандаринов, то оставшиеся массы лимонов, апельсинов и мандаринов оказались бы равными. Сколько килограммов фруктов каждого вида имеется в магазине?

Поделить нацело не получится, так как в задаче опечатка. В принципе, можно решить эту задачу, используя дроби:

1) 740-(56+36+34)=614 (кг) - фруктов было бы в магазине, если бы продали 56 кг лимонов, 36 кг апельсинов и 34 кг мандаринов
2) 614:3=204 2/3 (кг) - масса каждого вида фруктов, если бы их было поровну
3) 204 2/3 +56 = 260 2/3 (кг) - лимонов имеется в магазине
4) 204 2/3 + 36 = 240 2/3 (кг) - апельсинов
5) 204 2/3 + 34 = 238 2/3 (кг) - мандаринов
Ответ: 260 2/3 кг лимонов, 240 2/3 кг апельсинов, 238 2/3 кг мандаринов

С такими данными не получается в ответе целое число. Поэтому примем количество проданных лимонов за 55 кг ( так как в прошлой редакции учебника было 55).

Решение

55 + 36 + 34 = 125 (кг) - фруктов всего бы продали
740 − 126 = 615 (кг) - фруктов осталось бы в магазине
615 : 3 = 205 (кг) - масса каждого из оставшихся бы видов фруктов
205 + 55 = 260 (кг) - лимонов имеется в магазине
205 + 36 = 241 (кг) - апельсинов имеется в магазине
205 + 34 = 239 (кг) - мандаринов имеется в магазине
Ответ: 260 кг лимонов, 241 кг апельсинов, 239 кг мандаринов.

101

ГДЗ от 7gy.ru  к странице 101

381. 1) Одно из слагаемых увеличили на 19. Как следует изменить второе слагаемое, чтобы сумма не изменилась?

Уменьшить второе слагаемое на 19.

2) Вычитаемое уменьшили на 47. Как следует изменить уменьшаемое, чтобы разность не изменилась?

Уменьшить уменьшаемое на 47.

3) Уменьшаемое увеличили на 26. Как следует изменить вычитаемое, чтобы разность не изменилась?

Увеличить вычитаемое на 26.

382. Найдите сумму корней уравнений:
1) (x − 18) − 73 = 39 и 24 + (y − 52) = 81;
2) (65 − x) + 14 = 51 и (y + 16) + 37 = 284.

1) (x − 18) − 73 = 39
x − 18 = 39 + 73
x = 112 + 18
x = 130
24 + (y − 52) = 81
y − 52 = 81 − 24
y = 57 + 52
y = 109
x + y = 130 + 109 = 239

2) (65 − x) + 14 = 51
65 − x = 51 − 14
x = 65 − 37
x = 28
(y + 16) + 37 = 284
y + 16 = 284 − 37
y = 247 − 16
y = 231
x + y = 28 + 231 = 259

383. Как с помощью пятилитрового бидона и трехлитровой банки набрать на берегу реки 4 л воды?

Решение

Шаг 1.
Налить воды в банку и вылить в бидон.
Шаг 2.
Снова набрать воды в банку и вылит в бидон. В бидон поместится только 2 литра, а 1 литр воды останется в банке.
Шаг 3.
Выливаем воду из бидона в реку и наливаем в бидон 1 литр, оставшейся воды в банке.
Шаг 4.
Набираем из реки полную банку(3 литра) и выливаем в бидон в котором уже есть 1 литр.

110

Глава 3. Умножение и деление натуральных чисел

Параграф 16. Умножение. Переместительное свойство умножения

Страница 110

384. Запишите сумму в виде произведения:
1) 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6;

6 * 8 = 48

2) 9 + 9 + 9 + 9 + 9;

9 * 5 = 45

3) n + n + n + n + n + n + n;

n * 7 = 7n

4) 2 + 2 + . . . + 2 101 слагаемое;

2 * 101 = 202

5) 5 + 5 + . . . + 5 m слагаемых;

5m

6) m + m + . . . + m k слагаемых.

mk

385. Выполните умножение:
1) 516 * 32;
2) 418 * 46;
3) 4519 * 52;
4) 314 * 258;
5) 133 * 908;
6) 215 * 204;
7) 626 * 480;
8) 1234 * 567;
9) 2984 * 4006.

516 * 32 = 16512
418 * 46 = 19228
4519 * 52 = 234988
314 * 258 = 81012
133 * 908 = 120764
215 * 204 = 43860
626 * 480 = 300480
1234 * 567 = 699678
2984 * 4006 = 11953904

386. Выполните умножение:
1) 706 * 53;
2) 304 * 29;
3) 5245 * 67;
4) 591 * 289;
5) 465 * 506;
6) 328 * 406;
7) 934 * 260;
8) 2468 * 359;
9) 1234 * 2007.

387. Вычислите:
1) 704 * 69 + 1424;
704 * 69 + 1424 = 48576 + 1424 = 50000
2) 412 * 42 − 7304;
412 * 42 − 7304 = 17304 − 7304 = 10000
3) (938 − 543) * 34;
(938 − 543) * 34 = 395 * 34 = 13430
4) 85 * (870 − 567);
85 * (870 − 567) = 85 * 303 = 25755
5) (294 + 16) * (348 − 279);
(294 + 16) * (348 − 279) = 310 * 69 = 21390
6) 294 + 16 * 348 − 279;
294 + 16 * 348 − 279 = 294 + 5568 − 279 = 5862 − 279 = 5583
7) (294 + 16) * 348 − 279;
(294 + 16) * 348 − 279 = 310 * 348 − 279 = 107880 − 279 = 107601
8) 294 + 16 * (348 − 279).
294 + 16 * (348 − 279) = 294 + 16 * 69 = 294 + 1104 = 1398

388. Вычислите:
1) 603 * 84 + 2536;
603 * 84 + 2536 = 50652 + 2536 = 53188
2) 318 * 56 − 5967;
318 * 56 − 5967 = 17808 − 5967 = 11841
3) 64 * 96 − 77;
64 * 96 − 77 = 6144 − 77 = 6067
4) 64 * (96 − 77).
64 * (96 − 77) = 64 * 19 = 1216

389. Вычислите значение выражения:
1) 17x + 432, если x = 58;
2) (739 − x) * y, если x = 554, y = 4900.

390. Вычислите значение выражения:
1) 976 − 24x, если x = 36;
2) x * 63 − y, если x = 367, y = 19742.

391. Выполните умножение:
1) 693 * 100;
2) 974 * 1000;
3) 540 * 20;
4) 120 * 400;
5) 760 * 350;
6) 460 * 1800.

693 * 100 = 69300
974 * 1000 = 974000
540 * 20 = 10800
120 * 400 = 48000
760 * 350 = 266000
460 * 1800 = 828000

392. Выполните умножение:
1) 214 * 10;
2) 100 * 328;
3) 10000 * 546;
4) 140 * 80;
5) 580 * 240;
6) 270 * 3000.

214 * 10 = 2140
100 * 328 = 32800
10000 * 546 = 5460000
140 * 80 = 11200
580 * 240 = 139200
270 * 3000 = 810000

393. Готовясь к школе, Буратино купил 34 тетради по 12 сольдо и 18 тетрадей по 16 сольдо. Сколько сольдо заплатил Буратино за все тетради?

Решение

34 * 12 = 408 (с.) - заплатил Буратино за 34 тетради
18 * 16 = 288 (с.) - заплатил Буратино за 18 тетрадей
408 + 288 = 696 (с.) - заплатил Буратино за все тетради
Ответ: 696 сольдо.

111

Страница 111

394. Кот Матроскин продал 42 л молока по 24 р. за литр и 16 кг творога по 40 р. за килограмм. Сколько денег выручил Матроскин за свой товар?

Решение

42 * 24 = 1008 (руб.) - выручил Матроскин за молоко
16 * 40 = 640 (руб.) - выручил Матроскин за творог
1008 + 640 = 1648 (руб.) - выручил Матроскин за весь товар
Ответ: 1648 рублей.

395. В походе, длившемся несколько дней, турист 14 ч плыл по реке на лодке со скоростью 8 км/ч и шел пешком 23 ч со скоростью 4 км/ч. Какой путь, по реке или по суше, был длиннее и на сколько километров?

Решение

14 * 8 = 112 (км) - турист плыл по реке
23 * 4 = 92 (км) - турист шел пешком
112 − 92 = 20 (км) - разница
Ответ: на 20 км путь по реке был длиннее, чем по суше.

396. Путешественник плыл на моторной лодке 5 ч по реке со скоростью 27 км/ч и 7 ч по озеру со скоростью 21 км/ч. Какой путь, по реке или по озеру, был длиннее и на сколько километров?

Решение

5 * 27 = 135 (км) - плыл путешественник по реке
7 * 21 = 147 (км) - плыл путешественник по озеру
147 − 135 = 12 (км) - разница
Ответ: на 12 км путь по озеру был длиннее, чем по реке.

397. В школу завезли апельсины, мандарины и лимоны. Апельсинов было 94 кг, что в 7 раз меньше, чем мандаринов, и на 16 кг больше, чем лимонов. Сколько всего килограммов фруктов завезли в школу?

Решение

94 * 7 = 658 (кг) -  мандаринов завезли в школу
94 − 16 = 78 (кг) - лимонов завезли в школу
94 + 658 + 78 = 830 (кг) фруктов завезли в школу всего
Ответ: 830 кг.

398. Школе выделили 20 000 р. на покупку телевизора, аудиомагнитолы и фотоаппарата. Аудиомагнитола стоит 2460 р., что в 4 раза меньше стоимости телевизора и на 3720 р. меньше стоимости фотоаппарата. Хватит ли выделенных денег на покупку?

Решение

2460 * 4 = 9840 (руб.) стоимость телевизора
2460 + 3720 = 6180 (руб.) стоит фотоаппарат
2460 + 9840 +6180 = 18480 (руб.) стоимость всей покупки
18480 < 20000
Ответ: выделенных денег хватит.

399. Найдите значение выражения:
1) (318 * 207 − 64934) * 276 + 604 * 88;
2) 869 * (61124 − 488 * 125) − 509 * 74.

400. Найдите значение выражения:
1) (214 * 104 + 7544) * 35 − 508 * 722;
2) 647 * (36900 − 255 * 144) − 318 * 92.

401. Из одного порта в другой одновременно отправились теплоход и катер. Скорость теплохода составляет 28 км/ч, а скорость катера − 36 км/ч. Какое расстояние будет между ними через 5 ч после начала движения?

Решение

28 * 5 = 140 (км) - прошел теплоход
36 * 5 = 180 (км) - проплыл катер
180 − 140 = 40 (км) - будет между теплоходом и катером через 5 ч после начала движения
Ответ: 40 км.

402. Из одного села в одном направлении одновременно выехали два велосипедиста. Один из них ехал со скоростью 12 км/ч, а второй − 9 км/ч. Какое расстояние будет между ними через 6 ч после начала движения?

Решение

12 * 6 = 72 (км) - проехал первый велосипедист
9 * 6 = 54 (км) - проехал второй велосипедист
72 − 54 = 18 (км) - будет между ними через 6 ч после начала движения
Ответ: 18 км.

403. С одной станции в противоположных направлениях одновременно отправились два поезда. Один из них двигался со скоростью 64 км/ч, а второй − 57 км/ч. Какое расстояние будет между ними через 9 ч после начала движения?

Решение

64 * 9 = 576 (км) - проехал первый поезд
57 * 9 − 513 (км) - проехал второй поезд
576 + 513 = 1089 (км) - будет между ними через 9 ч после начала движения
Ответ: 1089 км.

404. Из одного города в противоположных направлениях одновременно выехали два автомобиля. Скорость одного из них была 74 км/ч, что на 8 км/ч больше, чем скорость другого. Какое расстояние будет между ними через 7 ч после начала движения?

Решение

74 * 7 = 518  (км) - проехал первый автомобиль
74 − 8 = 66 (км/ч) - скорость второго автомобиля
66 * 7 = 462 (км) -  проехал второй автомобиль
518 + 462 = 980 (км) - будет между автомобилями через 7 ч после начала движения
Ответ: 980 км.

112

Страница 112

405. Из двух городов одновременно навстречу друг другу выехали велосипедист и легковой автомобиль. Велосипедист ехал со скоростью 11 км/ч, а автомобиль − в 7 раз быстрее. Найдите расстояние между городами, если велосипедист и автомобиль встретились через 4 ч после начала движения.

Решение

11 * 4 = 44 (км) - проехал велосипедист
11 * 7 = 77 (км/ч) - скорость автомобиля
77 * 4 = 308 (км) - проехал автомобиль
44 + 308 = 352 (км) - расстояние между городами
Ответ: 352 км.

406. Из двух сел одновременно навстречу друг другу отправились велосипедист и пешеход. Пешеход шел со скоростью 3 км/ч, что в 4 раза меньше скорости велосипедиста. Найдите расстояние между селами, если велосипедист и пешеход встретились через 3 ч после начала движения.

Решение

3 * 3 = 9 (км) - прошел пешеход
3 * 4 = 12 (км/ч) - скорость велосипедиста
12 * 3 = 36 (км) - проехал велосипедист
9 + 36 = 45 (км) - расстояние между селами
Ответ: 45 км.

407. Всегда ли произведение двух натуральных чисел больше, чем их сумма?

Нет, например:
1 * 2 < 1 + 2;
1 * 13 < 1 + 13.

408. Как изменится произведение двух натуральных чисел, если:
1) один из множителей увеличить в 8 раз;
произведение увеличится в 8 раз
2) один из множителей уменьшить в 5 раз;
произведение уменьшится в 5 раз
3) каждый множителей увеличить в 6 раз;
произведение увеличится в 6 * 6 = 36 раз
4) один множитель увеличить в 13 раз, а другой − в 40 раз;
произведение увеличится в 13 * 40 = 520 раз
5) один множитель увеличить в 12 раз, а другой уменьшить в 3 раза?
произведение увеличится в 4 раза 12 : 3 = 4

409. Из двух поселков, расстояние между которыми равно 3 км, одновременно навстречу друг другу вышли два пешехода. Один из них двигался со скоростью 5 км/, а второй − 4 км/ч. Какое расстояние будет между пешеходами через 2 ч после начала движения?

Решение

5 * 2 = 10 (км) - пройдет первый пешеход за 2 часа
4 * 2 = 8 (км) - пройдет второй пешеход за 2 часа
(10 − 3) + (8 − 3) + 3 = 15 (км) будет между пешеходами через 2 ч после начала движения
Ответ: 15 км.

410. Вместо звёздочек поставьте цифры так, чтобы умножение было выполнено верно.

411. Вместо звёздочек поставьте цифры так, чтобы умножение было выполнено верно.

 

113

Страница 113

412. При каких значениях a верно равенство:
1) a * 5 = 5;
2) a * 5 = 0;
3) a * 5 = a;
4) a * 1 = 1;
5) a * 1 = a;
6) a * a = a;
7) 0 * a = a;
8) 0 * a = 0;
9) a * 1 = 0?

1) a * 5 = 5 
    a = 1

2) a * 5 = 0
    a = 0

3) a * 5 = a
    a = 0

4) a * 1 = 1
    a = 1

5) a * 1 = a
   при любом a

6) a * a = a
   a = 0; 1.

7) 0 * a = a
   a = 0

8) 0 * a = 0
   при любом a

9) a * 1 = 0
   при a = 0

413. Сумма и произведение четырех натуральных чисел равны 8. Найдите эти числа.

Решение

1 + 1 + 2 + 4 = 8
1 * 1 * 2 * 4 = 8

414. В записи 1 * 2 * 3 * 4 * 5 замените звездочки знаками "+" или "*" и расставьте скобки так, чтобы значение полученного выражения равнялось 100.

Решение

(1 * 2 + 3) * 4 * 5 = 5 * 4 * 5 = 100

415. Найдите величину угла ABM (рис.141), если ∠MBK − прямой и ∠ABM = ∠CBK.

∠MBK = 90°, так как прямой;
∠ABM = ∠CBK;
∠ABC = 180°, так как развернутый;
∠ABM = (∠ABC − ∠MBK) : 2 = (180° − 90°) : 2 = 90° : 2 = 45°

416. Угол ABC равен 72°, луч BD − биссектриса угла ABC, луч BE − биссектриса угла ABD. Вычислите величину угла CBE.

Так как луч BD − биссектриса угла ABC, то:
∠ABD = ∠DBC = 72° : 2 = 36°.
Так как луч BE − биссектриса угла ABD, то:
∠EBD = ∠ABE = 36° : 2 = 18°.
∠CBE = ∠EBD + ∠DBC = 18° + 36° = 54°

417. По формуле a = b : 4 − 6 найдите значение a, если:
1) b = 600;
2) b = 64;
3) b = 24;
4) b = 100.

Решение

1) a = 600 : 4 − 6 = 150 − 6 = 144
2) a = 64 : 4 − 6 = 16 − 6 = 10
3) a = 24 : 4 − 6 = 6 − 6 = 0
4) a = 100 : 4 − 6 = 25 − 6 = 19

418. Сумма длин первой и второй стороны треугольника равна 33 см, первой и третьей − 39 см, второй и третьей 42 см. Найдите периметр треугольника.

Решение

Так как каждая сторона в суммах длин указана по два раза, то:
33 + 39 + 42 = 114 (см) - удвоенный периметр треугольника
Р = 114 : 2 = 57 (см) 
Ответ: 57 см.

419. 1) Сложите из десяти спичек три квадрата.
2) Сложите из 19 спичек шесть квадратов. (складываем как а рисунке 142)
3) Какие четыре спички надо убрать (рис.142), чтобы остались четыре маленьких квадрата и один большой?

117

Параграф 17. Сочетательное и распределительное свойства умножения

Страница 117

420. Вычислите удобным способом:

1) 2 * 328 * 5 = (2 * 5) * 328 = 10 * 328 = 3280
2) 125 * 43 * 8 = (125 * 8) * 43 = 1000 * 43 = 43000
3) 25 * 243 * 4 = (25 * 4) * 243 = 100 * 243
4) 4 * 36 * 5 = (4 * 5) * 36 = 20 * 36 = 720
5) 50 * 236 * 2 = (50 * 2) * 236 = 100 * 236 = 23600
6) 250 * 3 * 4 = (250 * 4) * 3 = 1000 * 3 = 3000

421. Вычислите удобным способом:

1) 4 * 17 * 25 = (4 * 25) * 17 = 100 * 17 = 1700
2) 5 * 673 * 2 = (5 * 2) * 673 = 10 * 673 = 6730
3) 8 * 475 * 125 = (8 * 125) * 475 = 1000 * 475
4) 73 * 5 * 4 = (5 * 4) * 73 = 20 * 73 = 1460
5) 2 * 916 * 50 = (2 * 50) * 916 = 100 * 916 = 91600
6) 5 * 9 * 200 = (5 * 200) * 9 = 1000 * 9 = 9000

422. Упростите выражение:

1) 13 * 2a = 26a
2) 9x * 8 = 72x
3) 23 * 4b = 92b
4) 28 * y * 5 = 140y
5) 6a * 8b = 48ab
6) 11x * 14y = 154xy
7) 27m * 3n = 81mn
8) 4a * 8 * b * 3 * c = 96abc
9) 12x * 3y * 5z = 180xyz

423. Упростите выражение:

1) 12 * 3x = 36x
2) 10x * 6 = 60x
3) 5a * 7b = 35ab
4) 8m * 12n = 96mn
5) 2a * 3b * 4c = 24abc
6) 5x * 2y * 10z = 100xyz

424. Вычислите значение выражения наиболее удобным способом:

1) 318 * 78 + 318 * 22 = 318 * (78 + 22) = 318 * 100 = 31800
2) 856 * 92 − 853 * 92 = 92 * (856 − 853) = 92 * 3 = 276
3) 943 * 268 + 943 * 232 = 943 * (268 + 232) = 943 * 500 = 471500
4) 65 * 246 − 65 * 229 − 65 * 17 = 65 * (246 − 229 − 17) = 65 * 10 = 650

425. Вычислите значение выражения наиболее удобным способом:

1) 47 * 632 + 632 * 53 = 632 * (47 + 53) = 632 * 100 = 63200
2) 598 * 49 − 597 * 49 = 49 * (598 − 597) = 49 * 1 = 49
3) 754 * 324 − 754 * 314 = 754 * (324 − 314) = 754 * 10 = 7540
4) 37 * 46 − 18 * 37 + 37 * 72 = 37 * (46 − 18 + 72) = 37 * 100 = 3700

426. Раскройте скобки:

1) 2(a + 5) = 2a + 10
2) 8(7 − x) = 56 − 8x
3) 12(x + y) = 12x + 12y
4) (c − 9) * 11 = 11c − 99
5) (8 + y) * 16 = 128 + 16y
6) 15(4a − 3) = 60a − 45
7) 7(6a + 8b) = 42a + 56b
8) 10(2m − 3n + 4k) = 20m − 30n + 40k
9) (24x + 17y − 36z) * 4 = 96x + 68y − 144z

427. Раскройте скобки:

1) 4(a + 2) = 4a + 8
2) 3(m − 5) = 3m − 15
3) (p − q) * 9 = 9p − 9q
4) 12(a + b) = 12a + 12b
5) 5(2m − 1) = 10m − 5
6) (3c + 5d) * 14 = 42c + 70d

428. Упростите выражение:

1) 6a + 8a = 14a
2) 28c − 15c = 13c
3) 13y − 2y = 11y
4) m + 29m = 30m
5) 98p − p = 97p
6) 17k + k = 18k
7) 4x + 13x + 15x = 32x
8) 67z − 18z + 37 = 49z + 37
9) 35x + x − 6 = 36x − 6 = 6(6x − 1)

118

Страница 118

429. Упростите выражение:

1) 13b + 19b = 32b
2) 44d − 37d = 7d
3) 34n + n = 35n
4) 127q − q = 126q
5) 36y − 19y + 23y = 40y
6) 49a + 21a + 30 = 70a + 30 = 10 * (7a + 3)

430. Упростите выражение и найдите его значение:
1) 25x * 4y, если x = 12, y = 11;
2) 8k * 125c, если k = 58, c = 8.

1) 25x * 4y = 100xy = 100 * 12 * 11 = 13200
2) 8k * 125c = 1000kc = 1000 * 58 * 8 = 464000

431. Упростите выражение и найдите его значение:
1) 5a * 20b, если a = 4, b = 68;
2) 4m * 50n, если m = 22, n = 34.

1)5a * 20b = 100ab = 100 * 4 * 68 = 27200
2) 4m * 50n = 200mn = 200 * 22 * 34 = 149600

432. Вычислите наиболее удобным способом значение выражения:
1) 398 * 36 + 36b, если b = 602;
2) 986b − 86 * 83, если b = 83.

1) 398 * 36 + 36b = 36 * (398 + b) = 36 * (398 + 602) = 36 * 1000 = 36000
2) 986b − 86 * 83 = 986 * 83 − 86 * 83 = 83 * (986 − 86) = 83 * 900 = 74700

433. Вычислите наиболее удобным способом значение выражения:
1) 631 * 18 + x * 369, если x = 18;
2) 58a − 58 * 824, если a = 1024.

1) 631 * 18 + x * 369 = 631 * 18 + 18 * 369 = 18 * (631 + 369) = 18 * 1000 = 18000
2) 58a − 58 * 824 = 58 * (a − 824) = 58 * (1024 − 824) = 58 * 200 = 11600

434. Упростите выражение и найдите его значение::
1) 13p + 37p, если p = 14;
2) 72b − 43b, если b = 54;
3) 38x + 17x − 54x + x, если x = 678;
4) 86c − 35c − c + 296, если c = 47.

1) 13p + 37p = p * (13 + 37) = p * 50 = 14 * 50 = 700
2) 72b − 43b = b * (72 − 43) = b * 29 = 54 * 29 = 1566
3) 38x + 17x − 54x + x = x * (38 + 17 − 54 + 1) = x * 2 = 678 * 2 = 1356
4) 86c − 35c − c + 296 = c * (86 − 35 − 1) + 296 = c * 50 + 296 = 47 * 50 + 296 = 2350 + 296 = 2646

435. Упростите выражение и найдите его значение:
1) 34x + 66x, если x = 8;
2) 54a − 39a, если a = 26;
3) 18m − 5m + 7m, если m = 394;
4) 19z − 12z + 33z − 192, если z = 82.

1) 34x + 66x = x * (34 + 66) = 100x = 8 * 100 = 800
2) 54a − 39a = a * (54 − 39) = 15a = 15 * 26 = 390
3) 18m − 5m + 7m = 20m = 20 * 394 = 7880
4) 19z − 12z + 33z − 192 = z * (19 − 12 + 33) − 192 = 40z − 192 = 40 * 82 − 192 = 3280 − 192 = 3088

436. Вычислите удобным способом:

1) 16 * 25 = 4 * 4 * 25 = 4 * 100 = 400
2) 25 * 8 * 5 = (25 * 4) * (2 * 5) = 100 * 10 = 1000
3) 15 * 12 = 15 * 6 * 2 = 30 * 6 = 180
4) 375 * 24 = 375 * 4 * 6 = 1500 * 6 = 9000

437. Вычислите удобным способом:

1) 25 * 4 * 6 = 100 * 6 = 600
2) 125 * 25 * 32 = 125 * 25 * 4 * 8 = 1000 * 100 = 100000
3) 75 * 36 = 75 * 4 * 9 = 300 * 9 = 2700
4) 96 * 50 = 48 * 2 * 50 = 48 * 100 = 4800

438. Вычислите значение выражения, используя распределительное свойство умножения:

1) 43 * 64 + 43 * 23 − 87 * 33 = 43 * (64 + 23) − 87 * 33 = 43 * 87 − 87 * 33 = 87 * (43 − 33) = 87 * 10 = 870

2) 84 * 53 − 84 * 28 + 16 * 61 − 16 * 36 = 84 * (53 − 28) + 16 * (61 − 36) = 84 * 25 + 16 * 25 = 25 * (84 + 16) = 25 * 100 = 2500

439. Вычислите значение выражения, используя распределительное свойство умножения:

1) 93 * 24 − 27 * 24 + 66 * 76 = 24 * (93 − 27) + 66 * 76 = 24 * 66 + 66 * 76 = 66 * (24 + 76) = 66 * 100 = 6600

2) 82 * 46 + 82 * 54 + 135 * 18 − 18 * 35 = 82 * (46 + 54) + 18 * (135 − 35) = 82 * 100 + 18 * 100 = 8200 + 1800 = 10000

119

Страница 119

440. Выполните умножение:
1) 2 км 56 м * 68;
2) 7 р. 9 к. * 54;
3) 4 км 90 м * 43;
4) 3 т 5 ц 65 кг * 8;
5) 3 ч 48 мин * 25;
6) 5 ч 12 мин 36 с * 15.

1) 2 км 56 м * 68 = 68 * (2 км + 56 м) = 68 * 2 км + 68 * 56м = 136 км + 3808 м = 136 + 3000 м + 808 м = 139 км 808 м
2) 7 р. 9 к. * 54 = 54 * (7 р. + 9 к.) = 54 * 7 р. + 54 * 9 к. = 378 р. + 486 к. = 378 р. + 400 к. + 86 к. = 382 р. 86 к.
3) 4 км 90 м * 43 = 43 * (4 км + 90 м) = 43 * 4 км + 43 * 90 м = 172 км + 3870 м = 172 км + 3000 м + 870 м = 175 км 870 м
4) 3 т 5 ц 65 кг * 8 = 8 * (3 т 5 ц 65 кг) = 8 * 3 т + 8 * 5 ц + 8 * 65 кг = 24 т 40 ц 520 кг = 24 т + 45 ц + 20 кг = 28 т 5 ц 20 кг
5) 3 ч 48 мин * 25 = 25 * (3 ч + 48 мин) = 75 ч + 1200 мин = 75 ч + 20 ч = 95 ч
6) 5 ч 12 мин 36 с * 15 = 15 * (5 ч + 12 мин + 36 с) = 75 ч + 180 мин + 540 с = 75 ч + 3 ч + 9 мин = 78 ч 9 мин

441. Выполните умножение:
1) 8 ц 26 кг * 27;
2) 14 р. 80 к. * 406;
3) 6 т 45 кг * 82;
4) 5 м * 8 см * 42;
5) 7 мин 5 с * 24;
6) 4 сут 6 ч * 12.

1) 8 ц 26 кг * 27 = 27 * (8 ц + 26 кг) = 27 * 8 ц + 27 * 26 кг = 216 ц 702 кг = 216 ц + 700 кг + 2 кг = 223 ц 2 кг
2) 14 р. 80 к. * 406 = 406 * (14 р. + 80 к.) = 406 * 14 р. + 406 * 80 к. = 5684 р. + 32480 к. = 5684 р. + 32400 к. + 80 к. = 6008 р. 80 к.
3) 6 т 45 кг * 82 = 82 * (6 т + 45 кг) = 82 * 6 т + 82 * 45 кг = 492 т + 3690 кг = 492 т + 3600 кг + 92 кг = 492 т + 36 ц + 92 кг = 495 т 6 ц 92 кг
4) 5 м * 8 см * 42 = 42 * (5 м + 8 см) = 42 * 5 м + 42 * 8 см = 210 м + 336 см = 210 м + 300 см + 36 см = 213 см + 36 см
5) 7 мин 5 с * 24 = 24 * (7 мин + 5 с) = 24 * 7 мин + 24 * 5 с = 168 мин + 120 с = 120 мин + 48 мин + 2 мин = 2 ч 50 мин6) 4 сут 6 ч * 12 = 12 * (4 сут + 6 ч) = 48 сут + 72 ч = 48 сут + 3 сут = 51 сут

442. Сколькими нулями оканчивается произведение всех натуральных чисел:
1) от 1 до 10 включительно; двумя нулями
2) от 15 до 24 включительно; двумя нулями
3) от 10 до 30 включительно; четырьмя нулями
4) от 1 до 100 включительно? двадцатью нулями

Упражнения для повторения

443. Угол ABC − прямой, луч BP − биссектриса угла ABK, луч BM − биссектриса угла CBK (рис.145). Какова градусная мера угла MBP?

∠MBP = 90° : 2 = 45°

444. По двору бегали котята и цыплята. Вместе у них было 14 голов и 38 ног. Сколько котят и сколько цыплят бегало по двору?

Решение

38 : 2 = 19 (шт.) котят и цыплят бегало бы по двору, если бы у каждого из них было бы по 2 ноги, но так как у котят по 4 ноги и голов всего 14, то:
19 − 14 = 5 (шт.) котят бегало по двору
14 − 5 = 9 (шт.) цыплят бегало по двору
Ответ:  5 котят и 9 цыплят.

445. В первом ящике на 14 кг апельсинов меньше, чем во втором, и на 18 кг больше, чем в третьем. Сколько килограммов апельсинов во всех трех ящиках вместе, если во втором ящике их 44 кг?

Решение

44 − 14 = 30 (кг) - апельсинов было в первом ящике
30 − 18 = 12 (кг) - апельсинов было во втором ящике
30 + 44 + 12 = 86 (кг)  апельсинов было во всех трех ящиках вместе
Ответ: 86 кг.

446. В 5 классе учатся трое друзей: Миша, Дима и Саша. Один из них занимается футболом, второй − плаванием, а третий − боксом. У футболиста нет ни брата, ни сестры, он самый младший из друзей. Миша старше боксера и дружит с сестрой Димы. Каким видом спорта занимается каждый из друзей?

Решение

Узнаем кто из друзей футболист:
Это не Миша, так как он не самый младший, и это не Дима, так как у него есть сестра. Получается что футболист − Саша.
Узнаем кто из друзей боксер:
По условию Миша старше боксера, значит он не боксер, получается что боксер Дима.
Следовательно Миша занимается плаванием.

123

Параграф 18. Деление

Страница 123

447. Известно, что 243 * 425 = 103275. Чему равно значение выражения: 1) 103275 : 243; 2) 103275 : 425?

1) 103275 : 243 = 425
2) 103275 : 425 = 243

448. Известно, что 4608 : 48 = 96. Чему равно значение выражения: 1) 96 * 48; 2) 4608 : 96?

1) 96 * 48 = 4608
2) 4608 : 96 = 48

449. Заполните таблицу

Делимое 320 96 84   0    0   945 637  3232
Делитель 40 12  6   264 128  1   637   16
Частное    8   8   14  0     0   945   1    202

124

Страница 124

450. Выполните деление:
1) 1548 : 36;
2) 2668 : 58;
3) 5562 : 18;
4) 3672 : 34;
5) 15552 : 72;
6) 16728 : 68;
7) 16320 : 48;
8) 906192 : 126;
9) 942866 : 178.

451. Выполните деление:
1) 2812 : 74;
2) 1248 : 24;
3) 6565 : 13;
4) 9384 : 46;
5) 18526 : 59;
6) 15652 : 26;
7) 63378 : 63;
8) 153216 : 38;
9) 1334504 : 214.

452. Выполните деление:

1) 34250000 : 10 = 3425000
2) 34250000 : 1000 = 34250
3) 34250000 : 10000 = 3425
4) 25600 : 80 = 320
5) 25600 : 800 = 32
6) 2430000 : 180 = 13500
7) 2430000 : 1800 = 1350
8) 2430000 : 18000 = 135

453. Выполните деление:

1) 32596800 : 10 = 3259680
2) 876900 : 100 = 8769
3) 240000 : 10000 = 24
4) 450000 : 150 = 3000
5) 36000 : 12000 = 3
6) 124360000 : 40000 = 3109

454. Выполните действия:
1) 256 + 144 : 16 − 8;
2) (256 + 144) : (16 − 8);
3) (256 + 144) : 16 − 8;
4) 256 + 144 : (16 − 8).

256 + 144 : 16 − 8 = 256 + 9 − 8 = 257
1) 144 : 16 = 9
2) 256 + 9 = 265
3) 265 − 8 = 257

(256 + 144) : (16 − 8) = 400 : 8 = 50
1) 256 + 144 = 400
2) 16 − 8 = 8
3) 400 : 8 = 50

(256 + 144) : 16 − 8 = 400 : 16 − 8 = 25 − 8 = 17
1) 256 + 144 = 400
2) 400 : 16 = 25
3) 25 − 8 = 17

256 + 144 : (16 − 8) = 256 + 144 : 8 = 256 + 18 = 274
1) 16 − 8 = 8
2) 144 : 8 = 18
3) 256 + 18 = 274

455. Найдите значение выражения:
1) 4704 − 4704 : (46 + 38);
2) 2808 : 72 + 15808 : 52.

456. Найдите значение выражения:
1) 3264 − 3264 : (92 − 44);
2) 18144 : 84 − 2924 : 68.

457. Решите уравнение:
1) 13x = 195;
2) x * 18 = 468;
3) 11x + 6x = 408;
4) 33m − m = 1024;
5) x : 19 = 26;
6) 476 : x = 14.

13x = 195
x = 195 : 13
x = 15
Ответ: 15

x * 18 = 468
x = 468 : 18
x = 26
Ответ: 26

11x + 6x = 408
17x = 408
x = 408 : 17
x = 24
Ответ: 24

33m − m = 1024
32m = 1024
m = 1024 : 32
m = 32
Ответ: 32

x : 19 = 26
x = 26 * 19
x = 494
Ответ: 494

476 : x = 14
x = 476 : 14
x = 34
Ответ: 34

458. Решите уравнение:
1) 19x = 95;
2) x * 22 = 132;
3) 38x − 16x = 1474;
4) y + 27y = 952;
5) x : 25 = 16;
6) 324 : x = 27.

19x = 95
x = 95 : 19
x = 5
Ответ: 5

x * 22 = 132
x = 132 : 22
x = 6
Ответ: 6

38x − 16x = 1474
22x = 1474
x = 1474 : 22
x = 67
Ответ: 67

y + 27y = 952
28y = 952
y = 952 : 28
y = 34
Ответ: 34

x : 25 = 16
x = 16 * 25
x = 400
Ответ: 400

324 : x = 27
x = 324 : 27
x = 12
Ответ: 12

459. Всадник преодолевает расстояние между двумя селами за 5 ч, если двигается со скоростью 12 км/ч. С какой скоростью он должен двигаться, чтобы преодолеть это расстояние за 4 ч?

Решение

12 * 5 = 60 (км) - расстояние между двумя селами
60 : 4 = 15 (км/ч) - скорость, с которой должен двигаться всадник, чтобы преодолеть это расстояние за 4 ч
Ответ: 15 км/ч.

460. Вика купила 8 кг конфет по 90 р. за килограмм. Сколько килограммов конфет по 60 р. за килограмм она сможет купить за эти же деньги?

Решение

8 * 90 = 720 (руб.) - потратила Вика
720 : 60 = 12 (кг) - конфет по 60 р. за килограмм Вика сможет купить за эти же деньги
Ответ: 12 кг конфет

125

ГДЗ от 7gy.ru  к странице 125

461. Найдите значение выражения:
1) 82275 − 64 * 56 + 9680 : 16 − 23637;
2) (204 * 402 − 30456 : 423) : 36 − 1388;
3) 1376 : (621 − 589) + (138 − 69) * 29.

462. Найдите значение выражения:
1) 49184 + 4575 : 15 − 62 * 93 − 33999;
2) (306 * 307 − 187 * 36) : 45 + 5780;
3) 1885 : (542 − 477) + 48 * (134 − 92).

463. Малыш купил для Карлсона 8 пирожных и 12 булочек с повидлом, заплатив за всю покупку 408 крон. Одно пирожное стоит 24 кроны. Какова цена одной булочки?

Решение

8 * 24 = 192 (крон) - стоят пирожные
408 − 192 = 216 (крон) - стоят булочки
216 : 12 = 18 (крон) -  цена одной булочки
Ответ: 18 крон.

464. Дед Афанасий заготовил на зиму 6 бочек квашеной капусты и 14 бочонков соленых огурцов. В одной бочке вмещается 26 кг капусты. Сколько килограммов огурцов в одном бочонке, если всего дед Афанасий заготовил 324 кг овощей?

Решение

6 * 26 = 156 (кг) - капусты было заготовлено
324 − 156 = 168 (кг) - огурцов было заготовлено
168 : 14 = 12 (кг) - огурцов в одном бочонке
Ответ: 12 кг.

465. Сколько килограммов масла можно изготовить из 261 кг сливок, если из 9 кг сливок получается 2 кг масла?

Решение

261 : 9 = 29 (раз) -  во столько больше можно приготовить масла из 261 кг сливок, чем из 9 кг
29 * 2 = 58 (кг) масла можно изготовить из 261 кг сливок
Ответ: 58 кг.

466. Автомобиль расходует 8 л бензина на 100 км пути. Хватит ли 20 л бензина, чтобы доехать из Рязани до Владимира, расстояние между которыми 233 км?

Решение

8 * 2 = 16 (л) - бензина расходуется на 200 км пути
8 : 2 = 4 (л) - бензина расходуется на 50 км пути
16 + 4 = 20 (л) - бензина хватит на 200 + 50 = 250 км пути.
250 > 233
Ответ: 20 л бензина хватит чтобы доехать из Рязани до Владимира

467. Было собрано 328 кг проса. Сколько из этого проса можно получить пшена, если из 4 кг проса получается 3 кг пшена?

Решение

328 : 4 = 82 (раза)  - во столько больше можно получить пшена из 328 кг проса, чем из 4 кг проса
82 * 3 = 246 (кг) - пшена получится из 328 кг проса
Ответ: 246 кг.

268. Расстояние между двумя пристанями равно 476 км. Двигаясь по течению реки, катер проходит это расстояние за 14 ч. За сколько часов он пройдет это расстояние против течения реки, если скорость течения равна 3 км/ч?

Решение

476 : 14 = 34 (км/ч) - скорость катера по течению реки
34 − 3 = 31 (км/ч) - скорость катера
31 − 3 = (км/ч) - скорость катера против течения
476 : 28 = 17 (ч) - потребуется катеру, чтобы пройти 476 км против течения реки
Ответ: 17 часов

469. Расстояние между двумя портами равно 504 км. Двигаясь против течения реки, теплоход проходит это расстояние за 21 ч. За сколько часов он пройдет это расстояние по течению реки, если скорость течения равна 2 км/ч?

Решение

504 : 21 = 24 (км/ч) - скорость теплохода против течения
24 + 2 = 26 (км/ч) - скорость теплохода
26 + 2 = 28 (км/ч) - скорость теплохода по течению
504 : 28 = 18 (ч) - потребуется теплоходу, чтобы пройти 504 км по течению реки
Ответ: 18 ч.

126

Страница 126

470. Из Цветочного и Солнечного городов, расстояние между которыми равно 136 км, выехали одновременно навстречу друг другу Винтик и Шпунтик. Винтик двигался со скоростью 16 км/ч. С какой скоростью ехал Шпунтик, если они встретились через 14 ч после выезда?

Решение

16 * 4 = 64 (км) - проехал до встречи Винтик
136 − 64 = 72 (км) - проехал до встречи Шпунтик
72 : 4 = 18 (км/ч) - скорость с которой ехал Шпунтик
Ответ: 18 км/ч

471. Расстояние между двумя городами равно 1264 мили (1 сухопутная миля = 1609 м). Из них одновременно вылетели навстречу друг другу два вертолета и встретились через 8 ч после вылета. Скорость одного из вертолетов 82 миль/ч. С какой скоростью летел второй вертолет?

Решение

8 * 82 = 656 (миль) - пролетел до встречи первый вертолет
1264 − 656 = 608 (миль) - пролетел до встречи второй вертолет
608 : 8 = 76 (миль/ч) скорость второго вертолета
Ответ: 76 миль/ч.

472. В 6 ч утра из Мурома в Киев выехал со скоростью 9 км/ч Илья Муромец.В 8 ч утра из Мурома в Киев выехал Алеша Попович и догнал Илью Муромца в 2 ч дня. С какой скоростью ехал Алеша Попович?

Решение

2 часа дня = 14 часов дня
14 − 6 = 8 (ч) потратил до встречи Илья Муромец
8 * 9 = 72 (км) проехал до встречи Илья Муромец
14 − 8 = 6 (ч) потратил до встречи Алеша Попович
72 : 6 = 12 (км/ч) скорость Алеши Поповича
Ответ: 12 км/ч.

473. В 8 ч 57 мин черепаха Катрина отправилась в путешествие из своего пруда в соседний. В 9 ч 5 мин из этого же пруда в том же направлении отправилась черепаха Виктория и догнала Катрину в 9 ч 29 мин. Найдите, с какой скоростью двигалась Катрина, если известно, что Виктория двигалась со скорость 8 м/мин.

Решение

9 ч 29 мин − 9 ч 5 мин = 24 минуты двигалась до встречи черепаха Виктория
24 * 8 = 192 м преодолела до встречи черепаха Виктория
9 ч 29 мин − 8 ч 57 мин = 8 ч 89 мин − 8 ч 57 мин = 32 минуты двигалась до встречи черепаха Катрина
192 : 32 = 6 (м/мин) - скорость черепахи Катрины
Ответ: 6 м/мин.

474. С двух станций, расстояние между которыми равно 24 км, одновременно в одном направлении отправились два поезда. Впереди двигался поезд со скоростью 58 км/ч. Через 4 ч после начала движения его догнал второй поезд. Найдите скорость второго поезда.

Решение

58 * 4 = 232 (км) - проехал до встречи первый поезд
232 + 24 = 256 (км) - проехал до встречи второй поезд
256 : 4 = 64 (км/ч) скорость второго поезда
Ответ: 64 км/ч.

475. Расстояние между селами Грушевое и Яблоневое равно 30 км. Из этих сел одновременно в одном направлении отправились казаки Серошапка и Черноус. Черноус скакал на коне со скоростью 9 км/ч и через 6 ч после начала движения догнал Серошапку, который шел пешком. С какой скоростью шел Серошапка?

Решение

9 * 6 = 54 (км) - проехал до встречи Черноус
54 − 30 = 24 (км) - проехал до встречи Серошапка
24 : 6 = 4 (км/ч) - скорость Серошапки
Ответ: 4 км/ч.

476. Расстояние между городами Сен−Жермен и Сен−Антуан равно 12 лье (старинная французская единица длины, 1 лье приблизительно равно 4444 м). Из этих городков одновременно в одном направлении выехали Портос со скоростью 1 лье/ч и дАртаньян со скоростью 3 лье/ч, причем Портос скакал впереди. Через сколько часов после выезда дАртаньян догонит Портоса?

Решение

3 − 1 = 2 (лье/ч) - разница между скоростями дАртаньяна и Портоса
12 : 2 = 6 (ч) - потребуется дАртаньяну, чтобы догнать Портоса
Ответ: через 6 часов.

477. Расстояние между островами Акулий и Китовый равно 48 морским милям (1 морская миля = 1852 м). От этих островов одновременно в одном направлении отчалили фрегаты "Отважный" и "Стремительный", причем "Отважный" плыл впереди "Стремительного". Скорость "Отважного" равна 12 миль/ч, а "Стремительного" − 18 миль/ч. Через сколько часов "Стремительный" догонит фрегат "Отважный"?

Решение

18 − 12 = 6 (миль/ч) - разница скоростей "Стремительного" и "Отважного",
то есть один корабль догоняет другой со скоростью 6 миль/ч. При старте расстояние между ними было 48 миль, каждый час это расстояние сокращается на 6 миль, значит можно найти время:
48 : 6 = 8 (ч) потребуется "Стремительному", чтобы догнать "Отважный"
Ответ: через 8 часов.

127

Страница 127

478. Школьники Василий, Андрей, Дмитрий и Сергей собрали 326 кг яблок. Василий собрал 37 кг яблок, что в 3 раза меньше, чем Андрей, а Дмитрий и Сергей собрали яблок поровну. Кто из школьников собрал больше килограммов яблок?

Решение

37 * 3 = 111 (кг) - яблок собрал Андрей
37 + 111 = 148 (кг) - собрали Андрей и Василий вместе
326 − 148 = 178 (кг) - собрали Дмитрий и Сергей вместе
178 : 2 = 89 (кг) - собрали и Дмитрий, и Сергей
111 > 89 > 37
Ответ: больше всего яблок собрал Андрей.

479. Рабочие Иван, Петр, Степан и Павел изготовили 160 деталей. Иван изготовил 81 деталь, что в 3 раза больше, чем Петр, а Степан и Павел изготовили деталей поровну. Кто из рабочих изготовил меньше всех деталей?

Решение

81 : 3 = 27 (д.) - изготовил Петр
81 + 27 = 108 (д.) - изготовили Петр и Иван вместе
160 − 108 = 52 (д.) - изготовили Степан и Павел вместе
52 : 2 = 26 (д.) - изготовил и Степан, и Павел
81 > 27 > 26
Ответ: Степан и Павел изготовили меньше всех деталей.

480. Буратино живет на расстоянии 1 км 200 м от школы. Уроки в школе начинаются в 8 ч 30 мин. Буратино делает за минуту 120 шагов, длина шага − 40 см. В котором часу Буратино должен выходить из дома, чтобы приходить в школу за 10 мин до начала занятий?

Решение

1 км 200 м = 1200 м = 120000 см.
120 * 40 = 4800 (см) проходит Буратино за 1 минуту
120000 : 4800 = 25 (мин.) идет Буратино до школы
25 + 10 = 35 мин, то есть за 35 минут до начала занятий должен выходить Буратино из дома
8 ч 30 мин − 35 мин = 7 ч 90 мин − 35 мин = 7 ч 55 мин − время в которое Буратино должен выходить из дома
Ответ: в 7 ч 55 мин.

481. Дежурные первого отряда за 6 мин чистят 24 картофелины, а дежурные второго отряда за 9 мин − 45 картофелин. За сколько минут совместной работы они почистят 198 картофелин?

Решение

24 : 6 = 4 (к.) - в минуту чистят дежурные первого отряда
45 : 9 = 5 (к.) - в минуту чистят дежурные второго отряда
4 + 5 = 9 (к.) - в минуту чистят совместно дежурные первого и второго отрядов
198 : 9 = 22 (мин) потребуется дежурным двух отрядов, чтобы почистить 198 картофелин
Ответ: за 22 минуты.

482. На сколько дней школьной столовой хватит 800 л сока, если мальчики за 8 дней выпивают 960 л сока, а девочки за 6 дней − 480 л?

Решение

960 : 8 = 120 (л) - сока в день выпивают мальчики
480 : 6 = 80 (л) - сока в день выпивают девочки
120 + 80 = 200 (л) - сока в день выпивают мальчики и девочки совместно
800 : 200 = 4 (дня) - в столовой смогут поить детей соком
Ответ: на 4 дня.

483. За четыре дня работы три оператора набрали на компьютере вместе 288 страниц. Сколько страниц наберет один оператор за 7 дней, если у них одинаковая производительность труда?

Решение

288 : 4 = 72 (стр.) в день набирают совместно три оператора
72 : 3 = 24 (стр.) в день набирает один оператор
24 * 7 = 168 (стр.) наберет один оператор за 7 дней
Ответ: 168 страниц.

484. Для работы шести одинаковых двигателей в течении 8 ч требуется 672 л топлива. На сколько часов работы хватит 98 л топлива одному такому двигателю?

Решение

672 : 8 = 84 (л) - расходуют 6 двигателей за 1 час
84 : 6 = 14 (л) - расходует за час один двигатель
98 : 14 = 7 (ч) - проработает один двигатель на 98 литрах топлива
Ответ: 7 ч.

485. Белочки Рыженькая и Жёлтенькая собирали орехи. Рыженькая собрала 6 мешочков орехов, а Желтенькая − 7 таких же мешочков. Вместе они собрали 52 кг орехов. Сколько килограммов орехов собрала Рыженькая и сколько − Желтенькая?

Решение

6 + 7 = 13 (м.) - орехов собрали обе белочки
52 : 13 = 4 (кг) - орехов в одном мешочке
6 * 4 = 24 (кг) - собрала Рыженькая
7 * 4 = 28 (кг) - собрала Желтенькая
Ответ: 24 кг и 28 кг.

486. Двигаясь по пустыне в течении трех дней, караван преодолел 63 км. В первый день караван двигался 6 ч, во второй − 8 ч, а в третий − 7 ч. Сколько километров проходил караван каждый день, если известно, что он двигался все дни с постоянной скоростью?

Решение

6 + 8 + 7 = 21 (ч) двигался караван в течении трех дней
63 : 21 = 3 (км/ч) - скорость каравана
6 * 3 = 18 (км) - прошел караван в первый день
8 * 3 = 24 (км) - прошел караван во второй день
7 * 3 = 21 (км) - прошел караван в третий день
Ответ: 18 км, 24 км, 21 км.

487. Фермер привез на рынок 420 кг яблок и 180 кг груш в 50 одинаковых ящиках. Сколько ящиков было с яблоками и сколько − с грушами?

Решение

420 + 180 = 600 (кг) - масса всех фруктов
600 : 50 = 12 (кг) - масса фруктов в одном ящике
420 : 12 = 35 (ящ.) - с яблоками
180 : 12 = 15 (ящ.) - с грушами
Ответ: 35 ящиков и 15 ящиков.

488. Али−Баба перевозил найденное в пещере разбойников золото на четырех ослах в 22 одинаковых мешках. На первого осла он погрузил 80 кн золота, на второго − 100 кг, на третьего − 120 кг, на четвертого − 140 кг. Сколько мешков золота было нагружено на каждого осла?

Решение

80 + 100 + 120 + 140 = 440 (кг) - суммарная масса золота
440 : 22 = 20 (кг) - масса золота в одном ящике
80 : 20 = 4 (м.) - золота погрузили  на первого осла
100 : 20 = 5 (м.) - золота на второго осла
120 : 20 = 6 (м.) - золота на третьего осла
140 : 20 = 7 (м.) - золота на четвертого осла
Ответ: 4, 5 , 6 и 7 мешков.

128

ГДЗ от 7gy.ru  к странице 128

489. Решите уравнение:
1) 21(18 + x) = 714;
2) 16(4x − 34) = 608;
3) 12(152 + 19x) = 2052;
4) (152x + 32) * 6 = 192.

21(18 + x) = 714
18 + x = 714 : 21
x = 34 − 18
x = 16
Ответ: 16

16(4x − 34) = 608
4x − 34 = 608 : 16
4x = 38 + 34
x = 72 : 4
x = 18
Ответ: 18

12(152 + 19x) = 2052
152 + 19x = 2052 : 12
19x = 171 − 152
x = 19 : 19
x = 1
Ответ: 1

(152x + 32) * 6 = 192
152x + 32 = 192 : 6
152x = 32 − 32
152x = 0
x = 0
Ответ: 0

490. Решите уравнение:
1) 8(x − 14) = 56;
2) (46 − x) * 19 = 418;
3) 9(143 − 13x) = 234;
4) 17(5x − 16) = 238.

8(x − 14) = 56
x − 14 = 56 : 8
x − 14 = 7
x = 7 + 14
x = 21
Ответ: 21

(46 − x) * 19 = 418
46 − x = 418 : 19
x = 46 − 22
x = 24
Ответ: 24

9(143 − 13x) = 234
143 − 13x = 234 : 9
13x = 143 − 26
x = 117 : 13
x = 9
Ответ: 9

17(5x − 16) = 238
5x − 16 = 238 : 17
5x = 14 + 16
x = 30 : 5
x = 6
Ответ: 6

491. Решите уравнение:
1) 14x + 4x − 48 = 240;
2) 25b − 7b − 9 = 279;
3) 16a − 7a + 96 = 222;
4) 20y + 5y + y + 19 = 227.

14x + 4x − 48 = 240
18x = 240 + 48
x = 288 : 18
x = 16
Ответ: 16

25b − 7b − 9 = 279
18b = 279 + 9
b = 288 : 18
b = 16
Ответ: 16

16a − 7a + 96 = 222
9a = 222 − 96
a = 126 : 9
a = 14
Ответ: 14

20y + 5y + y + 19 = 227
26y = 227 − 19
y = 208 : 26
y = 8
Ответ: 8

492. Решите уравнение:
1) 9b + 6b − 15 = 615;
2) 2a + 123a + 97 = 472;
3) 17x − x + 5x − 19 = 170;
4) 73y − y − 22y + 40 = 190.

9b + 6b − 15 = 615
15b = 615 + 15
b = 630 : 15
b = 42
Ответ: 42

2a + 123a + 97 = 472
125a = 472 − 97
a = 375 : 125
a = 3
Ответ: 3

17x − x + 5x − 19 = 170
21x = 170 + 19
x = 189 : 21
x = 9
Ответ: 9

73y − y − 22y + 40 = 190
50y = 190 − 40
y = 150 : 50
y = 3
Ответ: 3

493. Решите уравнение:
1) (x + 14) : 9 = 13;
2) 966 : (x + 17) = 23;
3) x : 8 − 6 = 49;
4) 52 + 72 : х = 56;
5) 56 : (x − 6) = 8;
6) 56 : x − 6 = 8.

(x + 14) : 9 = 13
x + 14 = 13 * 9
x = 117 − 14
x = 103
Ответ: 103

966 : (x + 17) = 23
x + 17 = 966 : 23
x = 42 − 17
x = 25
Ответ: 25

x : 8 − 6 = 49
x : 8 = 49 + 6
x = 55 * 8
x = 440
Ответ: 440

52 + 72 : x = 56
72 : x = 56 − 52
x = 72 : 4
x = 18
Ответ: 18

56 : (x − 6) = 8
x − 6 = 56 : 8
x = 7 + 6
x = 13
Ответ: 13

56 : x − 6 = 8
56 : x = 8 + 6
56 : x = 14
x = 56 : 14
x = 4
Ответ: 4

494. Решите уравнение:
1) (x − 23) : 26 = 8;
2) 1728 : (56 − x) = 36.

(x − 23) : 26 = 8
x − 23 = 8 * 26
x = 208 + 23
x = 231
Ответ: 231

1728 : (56 − x) = 36
56 − x = 1728 : 36
x = 56 − 48
x = 8
Ответ: 8

495. Отец с сыном посадили 108 кустов помидоров, причем отец посадил в 2 раза больше, чем сын. Сколько кустов помидоров посадил сын?

Решение

Пусть сын посадил x кустов, тогда 2x кустов посадил отец.
Составим уравнение:
2x + x = 108
3x = 108
x = 108 : 3
x = 36
Ответ: 36 кустов посадил сын.

496. В два магазина завезли 268 кг шампиньонов, причем в первый магазин завезли шампиньонов в 3 раза меньше, чем во второй. Сколько килограммов шампиньонов завезли в каждый магазин?

Решение

Пусть x кг шампиньонов завезли во второй магазин, тогда 3x кг шампиньонов завезли в первый магазин.
Составим уравнение:
3x + x = 268
4x = 268
x = 268 : 4
x = 67
3x = 3 * 67 = 201
Ответ: 67 кг шампиньонов завезли во второй магазин, 201 кг шампиньонов завезли в первый магазин.

497. В двух залах кинотеатра демонстрировались два кинофильма. В первом зале зрителей было в 7 раз больше, чем во втором. Сколько зрителей находилось во втором зале, если известно, что их было на 156 меньше, чем в первом?

Решение

Пусть x зрителей было во втором зале, тогда 7x зрителей было в первом зале.
Составим уравнение:
7x − x = 156
6x = 156
x = 156 : 6
x = 26
Ответ: 26 зрителей было во втором зале.

498. Валентин подарил Виктории роза и орхидеи, причем орхидей было в 4 раза меньше, чем роз. Сколько роз подарил Валентин, если известно, что их было на 51 больше, чем орхидей?

Решение

Пусть орхидей было x штук, тогда 4x штук было роз.
Составим уравнение:
4x − x = 51
3x = 51
x = 51 : 3
x = 17
4x = 4 * 17 = 68
Ответ: 17 орхидей и 68 роз подарил Валентин Виктории..

499. Из вершины прямого угла проведен луч так, что он делит прямой угол на два угла, один из которых больше второго на 20°. Найдите величину каждого из образовавшихся углов.

Решение

Пусть первый угол равен x градусов, тогда второй угол равен x + 20 градусов.
Составим уравнение:
x + x + 20 = 90
2x = 90 − 20
x = 70 : 2
x = 35
x + 20 = 35 + 20 = 55.
Ответ: 35° величина первого угла, 55° величина второго угла.

500. Из вершины развернутого угла проведен луч так, что он делит развернутый угол на два угла, один из которых меньше второго на 50°. Найдите величину каждого из образовавшихся углов.

Решение

Пусть первый угол равен x градусов, тогда второй угол равен x + 50 градусов.
Составим уравнение:
x + x + 50 = 180
2x = 180 − 50
x = 130 : 2
x = 65
x + 50 = 65 + 50 = 115
Ответ: 65° величина первого угла, 115° величина второго угла.

501. В три магазина завезли 264 кг яблок. В первый магазин завезли в 3 раза больше яблок, чем в третий, а во второй − в 2 раза больше, чем в третий. Сколько килограммов яблок завезли в каждый магазин?

Решение

Пусть в третий магазин завезли x кг яблок, тогда:
3x кг яблок завезли в первый магазин;
2x кг яблок завезли во второй магазин.
Составим уравнение:
x + 2x + 3x = 264
6x = 264
x = 264 : 6
x = 44 (кг)
2x = 2 * 44 = 88 (кг)
3x = 3 * 44 = 132 (кг)
Ответ: 44 кг яблок завезли в третий магазин, 88 кг яблок завезли во второй магазин, 132 кг яблок завезли в первый магазин.

129

Страница 129

502. За четыре дня путешествия капитан Врунгель проплыл 546 миль. Во второй день он проплыл в 4 раза больше, чем в первый, в третий − в 3 раза больше, чем в первый, а в четвертый − в 5 раз больше, чем в первый. Сколько миль проплывал капитан Врунгель ежедневно?

Решение

Пусть в первый день капитан Врунгель проплыл x миль, тогда:
4x миль он проплыл во второй день;
3x миль он проплыл в третий день;
5x миль он проплыл в четвертый день.
Составим уравнение:
x + 4x + 3x + 5x = 546
13x = 546
x = 546 : 13
x = 42 (мили)
4x = 4 * 42 = 168 (миль) 
3x = 3 * 42 = 126 (миль)
5x = 5 * 42 = 210 (миль)
Ответ: 42 мили проплыл капитан Врунгель в первый день, 168 миль во второй день,  126 миль в третий день, 210 миль в четвертый день.

503. Егор, Саша и Алеша поймали 256 окуней. Егор поймал в 3 раза больше рыб, чем Саша, а Алеша − столько, сколько Егор и Саша вместе. Сколько окуней поймал лучший рыбак?

Решение

Пусть x окуней поймал Саша, тогда:
3x окуней поймал Егор;
x + 3x = 4x окуней поймал Алеша.
Составим уравнение:
x + 3x + 4x = 256
8x = 256
x = 256 : 8
x = 32 (ок.) поймал Саша;
3x = 3 * 32 = 96 (ок.) поймал Егор;
4x = 4 * 32 = 128 (ок.) поймал Алеша.
128 > 96 > 32
Ответ: лучший рыбак − Алеша, он поймал 128 окуней.

504. Красная Шапочка, Мальвина, Золушка и Дюймовочка слепили 500 пельменей. Красная Шапочка слепила в 2 раза больше пельменей, чем Дюймовочка, Мальвина − столько, сколько Мальвина и Дюймовочка вместе, а Золушка − столько, сколько Мальвина и Дюймовочка вместе. Сколько пельменей слепила каждая девочка?

Решение

Пусть x пельменей слепила Дюймовочка, тогда:
2x пельменей слепила Красная шапочка;
x + 2x = 3x пельменей слепила Мальвина;
x + 3x = 4x пельменей слепила Золушка.
Составим уравнение:
x + 2x + 3x + 4x = 500
10x = 500
x = 500 : 10
x = 50 (п.) слепила Дюймовочка
2x = 2 * 50 = 100 (п.) слепила Красная шапочка
3x = 3 * 50 = 150 (п.) слепила Мальвина
4x = 4 * 50 = 200 (п.) слепила Золушка
Ответ: 50, 100, 150 и 200 пельменей.

505. В трех вагонах электропоезда ехало 246 пассажиров. В первом вагоне было в 2 раза больше пассажиров, чем во втором, а в третьем − на 78 пассажиров больше, чем во втором. Сколько пассажиров ехало в каждом вагоне?

Решение

Пусть x пассажиров ехало во втором вагоне, тогда:
2x пассажиров ехало в первом вагоне;
x + 78 пассажиров ехало в третьем вагоне.
Составим уравнение:
x + 2x + x + 78 = 246
4x = 246 − 78
x = 168 : 4
x = 42 (п.) ехало во втором вагоне
2x = 2 * 42 = 84 (п.) ехало в первом вагоне
x + 78 = 42 + 78 = 120 (п.) ехало в третьем вагоне
Ответ: 42, 84 и 120 пассажиров.

506. В три школы отправили 552 кг апельсинов, причем в одну школу отправили в 6 раз меньше апельсинов, чем во вторую, и на 136 кг меньше, чем в третью. Сколько килограммов апельсинов отправили в каждую школу?

Решение

Пусть x кг апельсинов отправили в первую школу, тогда:
6x кг апельсинов отправили во вторую школу;
x + 136 кг апельсинов отправили в третью школу.
Составим уравнение:
x + 6x + x + 136 = 552
8x = 552 − 136
x = 416 : 8
x = 52 (кг) апельсинов отправили в первую школу
6x = 6 * 52 = 312 (кг) апельсинов отправили во вторую школу
x + 136 = 52 + 136 = 188 (кг) апельсинов отправили в третью школу
Ответ: 52 кг апельсинов отправили в первую школу, 312 кг во вторую, 188 кг в третью.

507. Одна из сторон треугольника в 5 раз меньше второй и на 25 см меньше третьей. Найдите стороны треугольника, если его периметр равен 74 см.

Решение

Пусть x см длина первой стороны треугольника, тогда:
5x см длина второй стороны треугольника;
x + 25 см длина третьей стороны треугольника.
Составим уравнение:
x + 5x + x + 25 = 74
7x = 74 − 25
x = 49 : 7
x = 7 (см) длина первой стороны треугольника
5x = 5 * 7 = 35 (см) длина второй стороны треугольника
x + 25 = 7 + 25 = 32 (см) длина третьей стороны треугольника
Ответ: 7 см, 35 см, 32 см.

508. Одна из сторон треугольника в 2 раза больше второй стороны, вторая − на 7 дм меньше третьей. Найдите стороны треугольника, если его периметр равен 99 дм.

Решение

Пусть x дм длина второй стороны треугольника, тогда:
2x дм длина первой стороны треугольника;
x + 7 дм длина третьей стороны треугольника.
Составим уравнение:
x + 2x + x + 7 = 99
4x = 99 − 7
x = 92 : 4
x = 23 (дм) длина второй стороны треугольника
2x = 2 * 23 = 46 (дм) длина первой стороны треугольника
x + 7 = 23 + 7 = 30 (дм) длина третьей стороны треугольника
Ответ: 23 дм, 46 дм, 30 дм.

509. 1) Верно ли, что если каждое слагаемое делится на некоторое число, то и сумма этих слагаемых делится на это число? Проиллюстрируйте свой ответ примерами.
2) Может ли сумма нескольких слагаемых делиться на некоторое число, если каждое слагаемое не делится на это число?

1) 2 + 4 + 6 + 8 + 10 + 50 = 80 верно, так как каждое слагаемое делится на 2 и сумма также делится на 2;
4 + 8 + 12 + 16 + 20 + 100 = 160 верно, так как каждое слагаемое делится на 4 и сумма также делится на 4.

2) Может, например:
3 + 5 + 7 + 9 = 24 делится и на 2, и на 4, и на 6, и на 8, но при этом не одно из слагаемых не делится на эти числа.

510. Как изменится частное, если:

1) делимое увеличить в 7 раз; частное увеличится в 7 раз
2) делитель увеличить в 4 раза; частное уменьшится в 4 раза
3) делимое увеличить в 8 раз, а делитель − в 2 раза; частное увеличится в 4 раза
4) делимое уменьшить в 9 раз, а делитель − в 3 раза; частное уменьшится в 3 раза
5) делимое увеличить в 6 раз, а делитель уменьшить в 2 раза; частное увеличится в 12 раз
6) делимое уменьшить в 6 раз, а делитель увеличить в 2 раза? частное уменьшится в 12 раз

130

ГДЗ от 7gy.ru  к странице 130

511. Делимое увеличили в 3 раза. Как надо изменить делитель, чтобы частное:

1) увеличилось в 6 раз; уменьшить делитель в 2 раза
2) уменьшилось в 6 раз; увеличить делитель в 18 раз
3) не изменилось? увеличить делитель в 3 раза

512. При каких значениях a верно равенство:

1) a : 1 = a при любом a
2) 0 : a = 0 при любом a
3) a : a = 1 при любом a, кроме 0.
4) a : 9 = 0 при a = 0
5) 16 : a = 0 ни при каком a
6) a : a = 0 ни при каком a

513. Вычислите удобным способом:

(44 * 58) : 11 = (44 : 11) * 58 = 4 * 58 = 232
(69 * 60) : 30 = (60 : 30) * 69 = 2 * 69 = 138
(26 * 20) : 13 = (26 : 13) * 20 = 2 * 20 = 40
(63 * 88) : 21 = (63 : 21) * 88 = 3 * 88 = 264
(350 * 48) : 70 = (350 : 70) * 48 = 5 * 48 = 240
(47 * 200) : 50 = (200 : 50) * 47 = 4 * 47 = 188
(2 * 17 * 14) : 28 = (28 * 17) : 28 = (28 : 28) * 17 = 17
(21 * 18) : 14 = (3 * 7 * 2 * 9) : 14 = (27 * 14) : 14 = (14 : 14) * 27 = 27
(5 * 11 * 32) : 16 = 5 * 11 * (32 : 16) = 5 * 11 * 2 = 110

514. Вычислите удобным способом:

(36 * 21) : 12 = (36 : 12) * 21 = 3 * 21 = 63
(40 * 420) : 60 = (420 : 60) * 40 = 7 * 40 = 280
(5 * 6 * 78) : 3 = (30 * 78) : 3 = (30 : 3) * 78 = 10 * 78 = 780
(45 * 63) : 81 = (5 * 9 * 7 * 9) : 81 = (35 * 81) : 81 = (81 : 81) * 35 = 1 * 35 = 35

515. Расставьте в записи 7 * 9 + 12 : 3 − 2 скобки так, чтобы значение полученного выражения было равно: 1) 75; 2) 23.

1) 7 * 9 + 12 : (3 − 2) = 63 + 12 = 75
2) (7 * 9 + 12) : 3 − 2 = 75 : 3 − 2 = 25 − 2 = 23

516. Расставьте в записи 4 * 12 + 18 : 6 + 3 скобки так, чтобы значение полученного выражения было равно: 1) 50; 2) 72.

1) 4 * 12 + 18 : (6 + 3) = 48 + 18 : 9 = 48 + 2 = 50
2) 4 * (12 + 18 : 6 + 3) = 4 * (12 + 3 + 3) = 4 * 18 = 72

517. Составьте числовое выражение с использованием только знаков четырех арифметических действий и четырех цифр 2 так, чтобы значение полученного выражения было равно: 1) 1; 2) 2; 3) 3; 4) 4; 5) 5; 6) 6; 7) 8; 8) 10.

2 : 2 + (2 − 2) = 1
2 : 2 + 2 : 2 = 2
2 * 2 − 2 : 2 = 4 − 1 = 3
2 * (2 : 2) + 2 = 4
2 * 2 + 2 : 2 = 4 + 1 = 5
(2 : 2 + 2) * 2 = 3 * 2 = 6
2 + 2 + 2 + 2 + 2 = 10
2 * 2 * 2 + 2 = 10

518. Периметр четырехугольника ABCD равен 34 см, AB = 6 см, стороны BC в 2 раза больше стороны AB, стороны CD и AD равны. Вычислите длину стороны AD.

BC = 2AB = 2 * 6 = 12 (см)
6 + 12 = 18 (см) сумма сторон AB и BC
34 − 18 = 16 (см) сумма сторон CD и AD
16 : 2 = 8 (см) длина стороны CD и AD
Ответ: 8 см.

519. Купили розовые и зеленые конверты. Розовых среди них было 18 конвертов. С марками было 12 конвертов, из них 8 были розовыми. Сколько всего купили конвертов?

Решение

12 − 8 = 4 ( к.) зеленых с марками
18 + 4 = 22 (к.) всего купили
Ответ: 22 конверта.

520. На столе расположено семь зубчатых колес так, что первое сцеплено со вторым, второе − с третьим и т.д., а седьмое сцеплено с первым. Могут ли все колеса вращаться одновременно?

Решение

Рассмотрим как будут вращаться колеса:
− первое по часовой стрелке;
− второе против часовой стрелки;
− третье по часовой стрелке, следовательно нечетные колеса будут вращаться по часовой;
− семь − нечетное число − крутится по часовой, значит колесо, зацепленное с ним должно вращаться против часовой стрелки, что противоречит пункту 1, значит колеса вращаться одновременно не могут.

133

Параграф 19. Деление с остатком

Страница 133

521. Выполните деление с остатком:
1) 42 : 5;
2) 592 : 24;
3) 428 : 37;
4) 684 : 30;
5) 1372 : 13;
6) 5721 : 28;
7) 3196 : 74;
8) 6516 : 204;
9) 12387 : 185.

522. Выполните деление с остатком:
1) 54 : 7;
2) 212 : 6;
3) 158 : 12;
4) 534 : 15;
5) 2964 : 18;
6) 4848 : 106.

523. 1) Найдите остаток при делении на 10 числа: 31; 47; 53; 148; 1596; 67389; 240750.
2) Найдите остаток при делении на 5 числа: 14; 61; 86; 235; 2658; 54769; 687903.

1) Так как число нацело делится на 10, когда оно заканчивается на 0, то остатки будут:
1; 7; 3; 8; 6; 9; 0.

2) Так как число нацело делится на 5, когда оно заканчивается на 0 ил на 5, то остатки будут:
4; 1; 1; 0; 3; 4; 3.

524. Найдите остаток при делении на 100 числа: 106; 202; 421; 836; 2764; 100098; 672305; 1306579; 562400.

Так как число нацело делится на 100, когда оно заканчивается на 00, то остатки будут:
6; 2; 21; 36; 64; 98; 5; 79; 0.

525. Запишите остатки, которые можно получить при делении на: 1) 7; 2) 13; 3) 24.

1) 1, 2, 3, 4, 5, 6.
2) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11.
3) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23.

526. Запишите остатки, которые можно получить при делении на: 1) 5; 2) 19.

1) 1, 2, 3, 4.
2) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19.

527. Блокнот стоит 26 р. Сколько блокнотов можно купить на 140 р.?

Решение

140 : 26 = 5 (остаток 10)
Ответ: 5 блокнотов можно купить на 140 р.

528. На один грузовик можно нагрузить 5 т песка. Сколько требуется таких грузовиков, чтобы перевезти 42 т песка?

Решение

42 : 5 = 8 (остаток 2)
Ответ: потребуется 9 грузовиков, чтобы перевезти 42 т песка.

529. В один ящик помещается 20 кг яблок. Сколько надо ящиков, чтобы разложить в них 176 кг яблок?

Решение

176 : 20 = 8 (остаток 16)
Ответ: 9 ящиков.

530. Заполните таблицу.

134

Страница 134

531. Найдите делимое, если делитель равен 12, неполное частное − 7, а остаток − 9.

12 * 7 + 9 = 84 + 9 = 93

532. Найдите делимое, если делитель равен 18, неполное частное − 4, а остаток − 11.

18 * 4 + 11 = 72 + 11 = 83

533. Выразите делимое через неполное частное, делитель и остаток в виде равенства a = bq + r, где a − делимое, b − делитель, q − неполное частное, r − остаток, если a = 82, b = 8.

a = bq + r
82 = 8 * q + r
82 = 8 * 10 + 2

534. Выразите делимое через неполное частное, делитель и остаток в виде равенства a = bq + r, где a − делимое, b − делитель, q − неполное частное, r − остаток, если a = 45, b = 7.

Решение

a = bq + r
45 = 7 * q + r
45 = 7 * 6 + 3

535. При каком наименьшем натуральном a значение выражения:
1) 48 + a делится нацело на 6;
2) 65 − a делится нацело на 8;
3) 96 − a при делении на 9 дает остаток 4?

Решение

1) при a = 6,
48 + a = 48 + 6 = 54
54 : 6 = 9

2) при a = 1,
65 − a = 65 − 1 = 64
64 : 8 = 8

3) при a = 2,
96 − a = 96 − 2 = 94
94 : 9 = 9 * 10 + 4

536. При каком наименьшем натуральном a значение выражения:
1) 53 + a делится нацело на 7;
2) a + 24 при делении на 5 дает остаток 2?

Решение

1) при a = 3,
53 + a = 53 + 3 = 56
56 : 7 = 8

2) при a = 3,
a + 24 = 3 + 24 = 27
27 : 5 = 5 (остаток 2)

537. Катя разделила число 211 на некоторое число и получила в остатке 26. На какое число делила Катя?

Решение

211 − 26 = 185
Так как остаток равен 26, то делитель числа 185 должен быть больше 26.
185 = 5 * 37 = 1 * 185
то есть Катя могла поделить число 211 на 37 или на 185, чтобы получить в остатке 26.
Ответ: 37 или 185.

538. Миша разделил число 111 на некоторое число и получил в остатке 7. На какое число делил Миша?

Решение

111 − 7 = 104
Так как остаток равен 7, то делитель числа 104 должен быть больше 7.
104 = 1 * 104 = 2 * 52 = 4 * 26 = 8 * 13
Ответ: Миша мог поделить число 111 на 104, 52, 26, 13 или 8.

539. Павел разделил число 70 на некоторое число и получил в остатке 4. На какое число делил Павел?

Решение

70 − 4 = 66
Так как остаток равен 4, то делитель числа 70 должен быть больше 4.
66 = 1 * 66 = 2 * 33 = 3 * 22 = 6 * 11
Ответ: Павел мог поделить число 70 на 66, 33, 22, 11 или 6.

540. Какое наибольшее количество понедельников может быть в году?

Решение

366 : 7 = 52 (ост. 2), значит понедельников 52 и в год может войти еще 1 понедельник.
Понедельников может быть 53 при условии, что год начинается с понедельника.

541. В одном осеннем месяце суббот и понедельников оказалось больше, чем пятниц. Каким днем недели было девятнадцатое число этого месяца? Какой это был месяц?

Решение

В месяце полных 4 недели, в неделе 7 дней, то есть 4 * 7 = 28 дней.
По условию суббот и понедельников больше, чем пятниц, следовательно месяц начнется с субботы и закончится понедельником, то есть нужно еще прибавить субботу, воскресенье и понедельник, то есть еще 3 дня.
Получается, сто в искомом месяце 28 + 3 = 31 день и следовательно этот месяц октябрь, так как осенью только в октябре 31 день.
Если месяц начинается с субботы, то 2 * 7 = 14 число будет пятницей, 15 − субботой, 16 − воскресеньем,..., 19 − средой.

542. Известно, что число a − делимое, число b − делитель, причем a < b. найдите неполное частное и остаток при делении a на число b.

Решение

Неполное частное = 0, остаток = a.

543. Докажите, что последняя цифра числа a равна остатку при делении этого числа на 10.

Решение

Число нацело делится на 10 тогда, когда оно оканчивается на 0. Поэтому последняя цифра числа a будет равна остатку при делении на 10, так как 0 + последняя цифра числа a = последняя цифра числа a.

544. Придумайте буквенное выражение, при подстановке в которое вместо буквы любого натурального числа получится числовое выражение, значение которого:

1) при делении на 3 даёт в остатке 1; 3b + 1
2) при делении на 8 даёт в остатке 3; 8b + 3
3) при делении на 11 даёт в остатке 7. 11b + 7

135

Ответы 7gy.ru, страница 135

545. Упростите выражение и найдите его значение:
1) 14a * 6b, если a = 2, b = 3;
2) 25m * 3n, если m = 8, n = 1;
3) 5x + 8x − 3x, если x = 17;
4) 16y − y + 5y, если y = 23.

14a * 6b = 84ab = 84 * 2 * 3 = 84 * 6 = 504
25m * 3n = 75mn = 75 * 8 * 1 = 75 * 8 = 600
5x + 8x − 3x = 10x = 10 * 17 = 170
16y − y + 5y = 20y = 20 * 23 = 460

546. Периметр прямоугольника равен 54 см, а его ширина на 3 см меньше длины. Найдите стороны прямоугольника.

Решение

54 : 2 = 27 (см) - длина + ширина
27 − 3 = 24 (см) - две ширины
24 : 2 = 12 (см) - ширина прямоугольника
12 + 3 = 15 (см) - длина прямоугольника
Ответ: 12 см и 15 см.

547. Известно, что веревка сгорает за 4 мин и горит при этом неравномерно.
Как с помощью:
1) одной веревки отмерить 2 мин;
2) двух таких веревок отмерить 3 мин?

1) Поджечь веревку с двух концов, когда она сгорит полностью, то пройдет 2 минуты.

2) Первую веревку поджечь с двух концов и одновременно вторую с одной стороны.
Когда первая веревка сгорит поджечь вторую со второй стороны.

136

Параграф 20. Степень числа

Страница 136

548. Назовите основание и показатель степени.

1) число 4 − основание степени, а число 8 − показатель степени.
2) число 13 − основание степени, а число 10 − показатель степени.
3) число a − основание степени, а число 9 − показатель степени.
4) число 6 − основание степени, а число m − показатель степени.
5) число 2 − основание степени, а число 39 − показатель степени.
6) число 93 − основание степени, а число 1 − показатель степени.

137

Ответы 7gy.ru, страница 137

549. Упростите выражение, заменив произведение одинаковых множителей степенью:
1) 9 * 9 * 9 * 9 * 9;
2) 10 * 10 * 10;
3) a * a * a * a;
4) x * x * x * x * x * x;
5) 3m * 3m * 3m * 3m * 3m;
6) 6*6*...*6 10-множителей
7) у*у*...*у 8-множителей
8) с*с*...*с n-множителей

550. Найдите значение выражения:
1) 33;
2) 72;
3) 54;
4) 25;
5) 06;
6) 112.

33 = 3 * 3 * 3 = 27
72 = 7 * 7 = 49
54 = 5 * 5 * 5 * 5 = 625
25 = 2 * 2 * 2 * 2 * 2 = 32
06 = 0
112 = 1

551. Найдите значение выражения:
1) 93 ;
2) 122 ;
3) 24 ;
4) 1100 ;
5) 1001 ;
6) 103 .

93 = 9 * 9 * 9 = 729
122 = 12 * 12 = 144
24 = 2 * 2 * 2 * 2 = 16
1100 = 1
1001 = 100
103 = 10 * 10 * 10 = 1000

552. Вычислите:

102 − 72 = 100 − 49 = 51
53 − 52 = 125 − 25 = 100
422 : 14 − 42 * 6 = 1764 : 14 − 16 * 6 = 126 − 96 = 30
83 : 42 − 23 = 512 : 16 − 8 = 32 − 8 = 24
252 : ( 242 + 72 ) = 625 : ( 576 + 49 ) = 625 : 625 = 1
103 − 102 + 93 = 1000 − 100 + 729 = 900 + 729 = 1629

553. Вычислите:

1) 32 + 42 = 9 + 16 = 25
2) 33 + 23 = 27 + 8 = 35
3) 262 − ( 122 * 3 + 175 ) = 676 − ( 144 * 3 + 175 ) = 676 − ( 432 + 175 ) = 676 − 607 = 69
4) 63 − 2 * 43 − 13 = 216 − 2 * 64 − 1 = 87
5) 152 : ( 132 − 124 ) = 225 : ( 169 − 124 ) = 225 : 45 = 5
6) 83 : ( 42 − 23 ) = 512 : ( 16 − 8 ) = 512 : 8 = 64

554. Найдите значение выражения:
1) 16 − c3 , если c = 2;
2) x3 − x2 , если x = 10;
3) 15a2 , если a = 4;
4) a2 b3 , если a = 6, b = 10;
5) ( x2 − y2 ) : ( x − y ) , если x = 4, y = 2;
6) ( x2 − y2 ) : x − y , если x = 4, y = 2;
7) x2 − y2 : ( x − y ) , если x = 4, y = 2;
8) x2 − y2 : x − y , если x = 4, y = 2.

1) 16 − c3 = 16 − 2 3 = 16 − 8 = 8
2) x3 − x2 = 103 − 102 = 1000 − 100 = 900
3) 15a2 = 15 * 42 = 15 * 16 = 240
4) a2 b3 = 62 * 103 = 36 * 1000 = 36000
5) ( x2 − y2 ) : ( x − y ) = ( 42 − 22 ) : ( 4 − 2 ) = ( 16 − 4 ) : 2 = 12 2 = 6
6) ( x2 − y2 ) : x − y = ( 42 − 22 ) : 4 − 2 = ( 16 − 4 ) : 4 − 2 = 12 : 4 − 2 = 3 − 2 = 1
7) x2 − y2 : ( x − y ) = 42 − 22 : ( 4 − 2 ) = 16 − 4 : 2 = 16 − 2 = 14
8) x2 − y2 : x − y = 42 − 22 : 4 − 2 = 16 − 4 : 4 − 2 = 16 − 1 − 2 = 13

555. 1) x2 − 14 , если x = 5; 7; 18;
2) 2y2 + 13 , если y = 6; 8; 9; 100.

1) при x = 5:   x2 − 14 = 52 − 14 = 25 − 14 = 11 ;
при x = 7:   x2 − 14 = 72 − 14 = 49 − 14 = 35 ;
при x = 18:   x2 − 14 = 182 − 14 = 324 − 14 = 310 .

2) при y = 6:   2y2 + 13 = 2 * 62 + 13 = 2 * 36 + 13 = 72 + 13 = 85 ;
при y = 8:   2y2 + 13 = 2 * 82 + 13 = 2 * 64 + 13 = 128 + 13 = 141 ;
при y = 9:   2y2 + 13 = 2 * 92 + 13 = 2 * 81 + 13 = 162 + 13 = 175 ;
при y = 100:   2y2 + 13 = 2 * 1002 + 13 = 2 * 10000 + 13 = 20000 + 13 = 20013 .

556. Запишите в виде степени с основанием 3 число;
1) 9;
2) 27;
3) 243;
4) 81.

9 = 32       27 = 33      243 = 35       81 = 34

557. Запишите в виде степени с основанием 2 число;
1) 4;
2) 16;
3) 32;
4) 256.

4 = 22      16 = 24       32 = 25    256 = 28

138

Страница 138

558. Составьте числовое выражение и найдите его значение:
1) сумма куба числа 5 и квадрата числа 8;
2) разность квадратов чисел 6 и 2;
3) квадрат разности чисел 6 и 2;
4) разность куба числа 3 и квадрат числа 5.

53 + 82 = 125 + 64 = 189
62 − 22 = 36 − 4 = 32
(6 − 2)2 = 42 = 16
33 − 52 = 27 − 25 = 2

559. Составьте числовое выражение и найдите его значение:
1) куб разности чисел 9 и 8;
2) квадрат суммы чисел 8 и 7;
3) сумма квадратов чисел 8 и 7;
4) разность кубов чисел 4 и 1.

(9 − 8)3 = 13 = 1
(8 + 7)2 = 152 = 225
82 + 72 = 64 + 49 =113
43 − 13 = 64 − 1 = 63

560. Решите уравнение:
1) 7(x − 19) = 133;
2) 9(213 − 2x) = 927;
3) 1344 : (x + 26) = 32;
4) 384 : (51 − 5x) = 24.

7(x − 19) = 133
x − 19 = 133 : 7
x = 19 + 19
x = 38
Ответ: 38

9(213 − 2x) = 927
213 − 2x = 927 : 9
2x = 213 − 103
x = 110 : 2
x = 55
Ответ: 55

1344 : (x + 26) = 32
x + 26 = 1344 : 32
x = 42 − 26
x = 16
Ответ: 16

384 : (51 − 5x) = 24
51 − 5x = 384 : 24
5x = 51 − 16
x = 35 : 5
x = 7
Ответ: 7

561. Для приготовления десяти порций мороженого используют 200 г сахара. На сколько порций мороженого хватит 500 г сахара?

Решение

200 : 10 = 20 (г) - сахара используют на одну порцию мороженого
500 : 20 = 25 (п) 
Ответ: на 25 порций мороженого.

562. Вася задумал трёхзначное число, у которого с каждым из чисел 652, 153 и 673 совпадает один из разрядов, а два других не совпадают. Какое число задумал Вася?

Ответ: Вася задумал число 172.

563. В очереди за билетами в цирк стояли Миша, Наташа, Петя, Дима и Маша. Маша купила билет раньше, чем Миша, но позже, чем Наташа. Петя и Наташа не стояли рядом, а Дима не был рядом ни с Наташей, ни с Машей, ни с Петей. Кто за кем стоял в очереди?

Решение

В очереди дети стояли следующем образом: Наташа, Маша, Петя, Миша, Дима.

139-140

Параграф 21. Площадь. Площадь прямоугольника

Нет заданий на этих страницах.

141

Страница 141

564. 1) Сколько квадратных сантиметров содержит 1 дм2 ? 1 м2 ?

1 дм2 = 10 см * 10 см = 100 см2
1 м2 = 100 см * 100 см = 10000 см2

2) Сколько квадратных сантиметров содержит 1 км2 ?

1 км2 = 1000 м * 1000 м = 1000000 м2

565. Вычислите площадь прямоугольника, соседние стороны которого равны 14 см и 8 см.

Решение

S = a * b = 14 * 8 = 112 (см2)

566. Вычислите площадь квадрата со стороной 7 дм.

S = a2 = 72 = 7 * 7 = 49 (дм2)

567. Одна сторона прямоугольника равна 16 см, а соседняя сторона − на 6 см длиннее. Вычислите площадь прямоугольника.

Решение

16 + 6 = 22 (см)
S = 16 * 22 = 352 (см2)
Ответ: 352 см2 площадь прямоугольника.

568. Одна сторона прямоугольника равна 48 см, а соседняя сторона − в 8 раз меньше. Вычислите площадь прямоугольника.

Решение

48 : 8 = 6 (см) вторая сторона прямоугольника
S = 48 * 6 = 288 (см2)
Ответ: 288 см2 площадь прямоугольника.

142

Страница 142

569. Периметр прямоугольника равен 162 дм, а одна из сторон − 47 дм. Найдите площадь прямоугольника.

Решение

47 * 2 = 94 (дм) - сумма двух противоположных сторон прямоугольника
162 − 94 = 68 (дм) - сумма двух других противоположны сторон прямоугольника
68 : 2 = 34 (дм) - ширина прямоугольника
47 * 34 = 1598 (дм2) - площадь прямоугольника.
Ответ: 1598 дм2.

570. Периметр прямоугольника равен 96 м, и он в 8 раз больше одной из сторон прямоугольника. Найдите площадь прямоугольника.

Решение

96 : 8 = 12 (м) - одна из сторон прямоугольника
12 * 2 = 24 (м) - сумма двух противоположных сторон прямоугольника
96 − 24 = 72 (м) - сумма двух других противоположных сторон прямоугольника
72 : 2 = 36 (м) - длина прямоугольника
12 * 36 = 432 (м2 ) - площадь прямоугольника
Ответ: 432 м2 .

571. Найдите площадь квадрата, периметр которого равен 96 см.

Решение

96 : 4 = 24 (см) - сторона квадрата
S = 242 = 24 * 24 = 576 (м2 ) - площадь квадрата
Ответ: 576 м2 .

572. Периметр прямоугольника равен 4 м 8 дм, одна из его сторон в 5 раз больше соседней стороны. Найдите площадь прямоугольника.

Решение

4 м 8 дм = 480 см;
480 : 2 = 240 (см) -  ширина + длина
пусть ширина равна x см, тогда длина 5x см.
Составим уравнение:
x + 5x = 240
6x = 240
x = 240 : 6
x = 40 (см) - ширина прямоугольника.
5x = 5 * 40 = 200 (см) - длина прямоугольника.
40 * 200 = 8000 (см2 ) - площадь прямоугольника
Ответ: 8000 см2 .

573. Периметр прямоугольника равен 6 дм 8 см, одна из его сторон на 1 дм 6 см меньше соседней стороны. Найдите площадь прямоугольника.

Решение

6 дм 8 см = 68 см; 1 дм 6 см = 16 см.
68 : 2 = 34 (см) ширина + длина
Пусть ширина x см, а длина x + 16, тогда:
x + x + 16 = 34
2x = 34 − 16
x = 18 : 2
x = 9 (см) - ширина прямоугольника
x + 16 = 9 + 16 = 25 (см) - длина прямоугольника
9 * 25 = 225 (см2 ) площадь прямоугольника
Ответ: 225 см2

574. Выразите:
1) в арах: 12 га; 45 га; 6 га 28 а; 14 га 68 а; 32400 м2 ; 123800 м2 ; 2 км2 14 га 5 а; 4 км2 72 га 16 a;
2) в квадратных метрах: 5 а; 17 а; 8 а; 63 га; 5 га 72 а; 14 га 43 а;
3) в гектарах и арах: 530 а; 1204 а; 16300 м2 ; 85200 м2 .

1) 12 га = 12 * 100 = 12а;
45 га = 45 * 100 = 45а;
6 га 28 а = 6 * 100 + 28 = 628 а;
14 га 68 а = 14 * 100 + 68 = 1468 а;
32400 м2 = 32400 : 100 = 324 а;
123800 м2 = 123800 : 100 = 1238 а;
2 км2 14 га 5 а = 2 * 10000 + 14 * 100 + 5 = 20000 + 1400 + 5 = 21405 а;
4 км2 72 га 16 a = 4 * 10000 + 72 * 100 + 16 = 40000 + 7200 + 16 = 47216 а.

2) 5 а = 5 * 100 = 500 м2 ;
17 а = 17 * 100 = 1700 м2 ;
8 а = 8 * 100 = 800 м2 ;
63 га = 63 * 10000 = 630000 м2 ;
5 га 72 а = 5 * 10000 + 72 * 100 = 50000 + 7200 = 57200 м2 ;
14 га 43 а = 14 * 10000 + 43 * 100 = 140000 + 4300 = 144300 м2 .

3) 530 а = 5 га + 30 а;
1204 а = 12 га 4 а;
16300 м2 = 1 га 63 а;
85200 м2 = 8 га 52 а.

575. Выразите:
1) в квадратных сантиметрах: 8 дм2 ; 16 дм2 ; 4 м2 ; 38 м2 ; 16 м2 19 дм2 ; 74 м2 ; 3 дм2 ;
2) в гектарах: 340000 м2 ; 5830000 м2 ; 53 км2 ; 14 км2 ; 5 км2 18 га; 24 км2 6 га.

1) 8 дм2 = 8 * 100 = 800 см2 ;
16 дм2 = 16 * 100 = 1600 см2 ;
4 м2 = 4 * 10000 = 40000 см2 ;
38 м2 = 38 * 10000 = 380000 см2 ;
16 м2 19 дм2 = 16 * 10000 + 19 * 100 = 160000 + 1900 = 161900 см2 ;
74 м2 3 дм2 = 74 * 10000 + 3 * 100 = 740000 + 300 = 740300 см2 .

2) 340000 м2 = 340000 : 10000 = 34 га;
5830000 м2 = 5830000 : 10000 = 583 га;
53 км2 = 53 * 100 = 5300 га;
14 км2 = 14 * 100 = 1400 га;
5 км2 18 га = 5 * 100 + 18 = 518 га;
24 км2 6 га = 24 * 100 + 6 = 2406 га.

576. Поле прямоугольной формы имеет площадь 56 а, его длина − 80 м. Вычислите периметр поля.

Решение

56 a =  5600 м2
5600 : 80 = 70 (м) - ширина поля
2 * 70 + 2 * 80 = 140 + 160 = 300 (м) - периметр поля
Ответ: 300 м.

577. Поле прямоугольной формы имеет площадь 84 а, его ширина − 150 м. Вычислите периметр поля.

Решение

48 a = 4800 м2
4800 : 150 = 32 (м) - длина поля
2 * 32 + 2 * 150 = 64 + 300 = 364 (м) периметр поля
Ответ: 364 м.

578. Вычислите периметр и площадь фигуры, изображенной на рисунке 148 (размеры даны в сантиметрах).

Решение

а) P = 8 + 18 + 15 + 18 + 10 + 8 + 5 = 82 см
S 1 = 5 * 8 = 40 см2
S 2 = 15 * 18 = 270 см2
S = S 1 + S 2 = 40 + 270 = 310 см2

б) P = 16 * 2 + 4 * 2 + 6 * 2 + 3 + 11 = 32 + 8 + 12 + 3 + 11 = 66 см
S 1 = 3 * 6 = 18 см2
S 2 = 11 * 16 = 176 см2
S = S 1 + S 2 = 18 + 176 = 194 см2

143

Страница 143

579. Вычислите периметр и площадь фигуры, изображенной на рисунке 149 (размеры даны в сантиметрах).

Решение


P = 18 * 2 + (12 + 6 + 12) * 2 + 4 * 2 = 36 + 60 + 8 = 104 см
S 1 = 6 * 4 = 24 см2
S 2 = 18 * ( 12 + 12 + 6 ) = 18 * 30 = 540 см2
S = S 2 − S 1 = 540 − 24 = 516 см2
Ответ: 104 см и 516 см2.

580. Хватит ли 5 т гороха, чтобы засеять им поле, имеющее форму прямоугольника со сторонами 500 м и 400 м, если на 1 га земли надо высеять 260 кг гороха?

Решение

500 * 400 = 200000 м2 = 20 га площадь поля;
260 * 20 = 5200 кг = 5 т 200 кг необходимо гороха, чтобы засеять все поле:
5 т 200 кг > 5 т
Ответ: 5 т гороха не хватит.

581. Отец решил облицевать кафелем стену кухни, длина которой равна 4 м 50 см, а высота − 3 м. Хватит ли ему 20 ящиков кафеля, если одна плитка имеет форму квадрата со стороной 15 см, а в одном ящике находится 30 плиток?

Решение

450 * 300 = 135000 (см2 ) - площадь кухонной стены
15 * 15 = 225 (см2 ) - площадь одной плитки
20 * 30 = 600 (пл.) - было всего
135000 : 225 = 600 (пл.) - необходимо, чтобы облицевать стену
600 = 600
Ответ: 20 ящиков кафеля хватит.

582. Фермер Петр Трудолюб посадил в теплице огурцы. Длина теплице равна 16 м 50 см, а ширина − 12 м. Сколько килограммов огурцов соберет фермер в своей теплице, если с 1 м2 собирает 30 кг огурцов?

Решение

16 м 50 см = 1650 см
12 м = 1200 см
1650 * 1200 = 1980000 (см2 )= 198 (м2 ) − площадь теплицы
198 * 30 = 5940 (кг) - огурцов соберет фермер в своей теплице
Ответ: 5940 (кг)

583. Расход эмалевой краски на однослойное покрытие составляет 180 г на 1 м2 . Хватит ли 3 кг эмали, чтобы покрасить стену длиной 6 м и высотой 3 м?

Решение

6 * 3 = 18 (м2 ) - площадь стены
18 * 180 = 3240 (г) = 3 кг 240 г краски необходимо, чтобы покрасить стену
3 кг 240 г > 3 кг
Ответ: краски не хватит.

584. Квадрат со стороной 12 см и прямоугольник, длина которого равна 18 см, имеют равные площади. Найдите периметр прямоугольника.

Решение

12 * 12 = 144 (см2 ) - площадь квадрата
144 : 18 = 8 (см) - ширина прямоугольника
2 * 8 + 2 * 18 = 16 + 36 = 52 (см) - периметр прямоугольника
Ответ: 52 см.

585. Квадрат и прямоугольник имеют равные площади, соседние стороны прямоугольника равны 3 см и 12 см. Найдите периметр квадрата.

Решение

3 * 12 = 36 (см2 ) - площадь прямоугольника
6 * 6 = 36 (см2 ) - площадь квадрата
P = 4 * 6 = 24 (см) - периметр квадрата
Ответ: 24 см.

586. Ширина прямоугольника равна 26 см. На сколько квадратных сантиметров увеличится площадь этого прямоугольника, если его длину увеличить на 4 см?

Решение

4 * 26 = 104 (см2 ), то есть на 104 квадратных сантиметров увеличится площадь этого прямоугольника, если его длину увеличить на 4 см.

587. Во сколько раз увеличится периметр и площадь прямоугольника, если каждую его сторону увеличить в 4 раза?

Решение

Периметр прямоугольника равен 2a + 2b = 2(a + b).
Если каждую сторону увеличить в 4 раза, то периметр будет равен 2 * 4a + 2 * 4b = 8(a + b).
8(a + b) : 2(a + b) = 4, то есть периметр увеличится в 4 раза.
Площадь прямоугольника равна a * b.
Если каждую сторону увеличить в 4 раза, то площадь будет равна 4a * 4b = 16ab.
8(a + b) : 2(a + b) = 4, то есть периметр увеличится в 4 раза.
16ab : ab = 16, то есть площадь увеличится в 16 раз.

588. Длина прямоугольника равна 32 см. На сколько квадратных сантиметров уменьшится площадь этого прямоугольника, если его ширину уменьшить на 5 см?

Решение

5 * 32 = 160 (см2 ), то есть на 160 квадратных сантиметров уменьшится площадь прямоугольника, если его ширину уменьшить на 5 см.

589. Площадь квадрата ABCD равна 16 см2 (рис.150). Чему равна площадь прямоугольника ACFE?

Решение

S ACFE = S ADE + S ADC + S CDF
S ACD = S ADE + S CDF = S ABCD : 2 =16 : 2 = 8 (см2 )
S ACFE = 8 + 8 = 16 (см2 )

144

Страница 144

590. Стороны прямоугольного листа бумаги имеют целочисленную длину (в сантиметрах), а площадь листа равна 12 см2 . Сколько квадратов площадью 4 с м 2 можно вырезать из этого прямоугольника?

Ответ: 2 квадрата, если размеры листа 3 см Х 4 см;
3 квадрата, если размеры листа 2 см Х 6 см.

591. Стороны прямоугольного листа бумаги имеют целочисленную длину (в сантиметрах), а площадь листа равна 18 см2 . Сколько квадратов со стороной 3 см можно вырезать из этого листа?

Ответ: 2 квадрата, если размеры листа 3 см Х 6 см.

592. Внутри прямоугольника ABCD (рис. 151) вырезали отверстие прямоугольной формы. Как одним прямолинейным разрезом разделить полученную фигуру на две фигуры с равными площадями?

 

593. Используя четыре из пяти изображенных на рисунке 152 фигур, составьте квадрат.

 

594. Можно ли разрезать квадрат на несколько частей так, чтобы потом их них можно было составить два квадрата, длины сторон которых выражаются целым числом сантиметров, если сторона данного квадрата равна:
1) 5 см;
2) 6 см?

1) 52 = 32 + 42 , поэтому если сторона квадрата равна 5 см, то его можно разрезать на квадраты со стороной 1 см, затем сложить два квадрата, длина сторон которых равны 3 см и 4 см.

2) Если стороны квадрата равны 6 см, то его невозможно разрезать на несколько частей так, чтобы потом из них можно было бы сложить два квадрата с целочисленными длинами, так как 62 = 36 нельзя записать как сумму квадратов двух чисел.

595. Из вершины прямого угла ABC (рис. 153) провели лучи BD и BE так, что угол ABE оказался больше угла DBE на 34°, а угол CBD больше угла DBE на 23°. Какова градусная мера угла DBE?

Решение

∠ABD = ∠ABE − ∠DBE = 34°;
∠CBE = ∠CBD − ∠DBE = 23°;
∠DBE = 90° − 34° − 23° = 33°.

596. Выполните действия:
1) 1008 * 604 − 105984 : 12 − 54321;
2) (57 * 34 + 812754 : 27) : 18.

 

145

Страница 145

597. Расстояние между городами A и B равно 30 км. Из города A в город B выехал велосипедист и двигался со скоростью 15 км/ч. Одновременно из города B в направлении города A вылетела птица со скоростью 30 км/ч. Встретившись с велосипедистом, птица развернулась и полетела навстречу велосипедисту. Встретившись с ним, птица развернулась и полетела назад в город B и т.д. Сколько километров пролетела птица за то время, пока велосипедист ехал из города A в город B?

Решение

30 : 15 = 2 (ч) потратил велосипедист, чтобы доехать из города A в город B
30 * 2 = 60 (км) пролетела птица за то время, пока велосипедист ехал из города A в город
Ответ: 60 км.

146-149

Стр. 146 - 149 Параграф 22. Прямоугольный параллелепипед. Пирамида

Нет заданий на этих страницах учебника.

На вопросы отвечайте, прочитав материал на этих страницах.

150

Ответы к стр. 150

598. На рисунке 168 изображен прямоугольный параллелепипед ABCDMNKP. Назовите:
1) грани, которым принадлежит вершина C;
2) ребра, равные ребру BC;
3) верхнюю грань;
4) вершины, принадлежащие нижней грани;
5) грани, имеющие общее ребро AM;
6) грань, равную грани DPKC.

Ответы:

1) ABCD; CDPK; CBNK.
2) AD; MP; NK.
3) MNKP
4) A; B; C; D.
5) AMPD; AMNB.
6) AMNB.

151

Ответы к странице 151

599. Измерения прямоугольного параллелепипеда MNKPEFST (рис. 169) равны 9 см, 5 см и 6 см. Вычислите сумму длин всех его ребер и площадь его поверхности.

9 * 4 + 5 * 4 + 6 * 4 = 36 + 20 + 24 = 80 (см) - сумма длин всех ребер прямоугольного параллелепипеда
6 * 9 * 2 + 6 * 5 * 2 + 9 * 5 * 2 = 108 + 60 + 90 = 258 (см2) - площадь прямоугольного параллелепипеда

600. Найдите сумму длин всех ребер прямоугольного параллелепипеда, измерения которого равны 13 см, 16 см, 21 см.

13 * 4 + 16 * 4 + 21 * 4 = 4 * (13 + 16 + 21) = 4 * 50 = 200 (см) сумма длин всех ребер прямоугольного параллелепипеда

601. Найдите площадь поверхности прямоугольного параллелепипеда, измерения которого равны 9 м, 24 м, 11 м.

S = 2 * 9 * 24 + 2 * 9 * 11 + 2 * 11 * 24 = 2 * 216 + 2 * 99 + 2 * 264 = 432 + 198 + 528 = 1158 (м2)

602. Вычислите площадь поверхности и сумму длин всех ребер куба (рис. 170), ребро которого равно 5 см.

5 * 12 = 60 (см) сумма длин всех ребер
S = 5 * 5 * 6 = 150 (см2) площадь поверхности

603. Найдите сумму длин всех ребер и площадь поверхности куба, если его ребро равно 7 см.

7 * 12 = 84 (см) сумма длин всех ребер
S = 7 * 7 * 6 = 294 (см2) площадь поверхности

604. На рисунке 171 изображена пирамида MABC. Укажите:
1) основание пирамиды;
2) вершину пирамиды;
3) боковые грани пирамиды;
4) боковые ребра пирамиды;
5) ребра основания пирамиды.

Ответы:

1) основание пирамиды: ABC.
2) вершина пирамиды: M.
3) боковые грани пирамиды: AMB; BMC; AMC.
4) боковые ребра пирамиды: MA; MB; MC.
5) ребра основания пирамиды: AB; BC; AC.

605. На рисунке 172 изображена пирамида SABCD. Укажите:
1) основание пирамиды;
2) вершину пирамиды;
3) боковые грани пирамиды;
4) боковые ребра пирамиды;
5) ребра основания пирамиды.

Ответы:

1) основание пирамиды: ABCD.
2) вершина пирамиды: S.
3) боковые грани пирамиды: SAB; SAD; SDC; SBC.
4) боковые ребра пирамиды: SA; SB; SC; SD.
5) ребра основания пирамиды: AB; BC; AD; DC.

152

Ответы к странице 152

606. На рисунке 173 изображена развертка прямоугольного параллелепипеда.
1) Из скольких прямоугольников состоит развертка?
2) Сколько пар равных прямоугольников содержит развертка?
3) Какова площадь этой развертки, если измерения параллелепипеда равны 10 см, 7 см и 3 см?

Ответы:

1) Развертка состоит из 6 прямоугольников.
2) 3 пары равных прямоугольников содержит развертка.
3) S = 2 * (10 * 7) + 2 * (10 * 3) + 2 * (7 * 3) = 2 * 70 + 2 * 30 + 2 * 21 = 140 + 60 + 42 = 242 (см2) площадь развертки.

607. Вычислите площадь поверхности прямоугольного параллелепипеда, развертка которого изображена на рисунке 174.

S = 2 * (6 * 4) + 2 * (2 * 6) + 2 * (2 * 4) = 2 * 24 + 2 * 12 + 2 * 8 = 48 + 24 + 16 = 88 (см2) площадь поверхности прямоугольного параллелепипеда.

608. Высота прямоугольного параллелепипеда равна 20 см, что на 5 см больше его ширины и в 3 раза меньше его длины. Вычислите площадь поверхности параллелепипеда.

20 − 5 = 5 (см) ширина прямоугольного параллелепипеда
20 * 3 = 60 (см) длина прямоугольного параллелепипеда
S = 2 * (15 * 20) + 2 * (15 * 60) + 2 * (20 * 60) = 2 * 300 + 2 * 900 + 2 * 1200 = 600 + 1800 + 2400 = 4800 (см2)  площадь поверхности прямоугольного параллелепипеда.
4800 см2 = 48 дм2

609. Высота длин всех ребер прямоугольного параллелепипеда равна 28 см. Найдите сумму длин трех его ребер, имеющих общую вершину.

28 : 4 = 7 (см) - сумма длин трех ребер, имеющих общую вершину.

153

Ответы к странице 153

610. Прямоугольный параллелепипед и куб имеют равные площади поверхностей. Длина параллелепипеда равна 18 м, что в 2 раза больше, чем его ширина, и на 8 м больше, чем его высота. Найдите ребро куба.

18 : 2 = 9 (м) ширина параллелепипеда
18 − 8 = 10 (м) высота параллелепипеда
S = 2 * (9 * 10) + 2 * (9 * 18) + 2 * (10 * 18) = 2 * 90 + 2 * 162 + 2 * 180 = 180 + 324 + 360 = 864 (м2)
площадь поверхности прямоугольного параллелепипеда, а значит и куба.
864 : 6 = 144 (м2) площадь грани куба,
а так 144 = 12 * 12, значит ребро куба равно 12 см.

611. Брусок, имеющий форму прямоугольного параллелепипеда с измерениями 4 см, 5 см и 6 см, покрасили со всех сторон и разрезали на кубики с ребром 1 см. Сколько получилось кубиков, у которых окрашено:
1) три грани;
2) две грани;
3) одна грань?

Ответы:

1) Кубиков у которых окрашено три грани 8 штук, так как они находятся в вершинах параллелепипеда, а количество вершин равно 8.
2) Кубики у которых окрашено две грани, это те кубики которые находятся вдоль ребер:
8 + 12 + 16 = 36 кубиков.
3) Кубиков у которых окрашено одна грань: 12 + 16 + 24 = 52 кубика.

612. Скорость ракеты равна 8 км/с. За сколько минут она пролетит 960 км?

960 : 8 = 120 с = 2 (мин.)
Ответ: за 2 минуты.

613. Из листа картона можно вырезать шесть одинаковых квадратов. Сколько листов картона надо для того, чтобы вырезать 50 таких квадратов.

50 : 6 = 8 (ост. 2) - значит нужно больше 8 листов, но меньше 9-ти. А так как мы считаем целыми листами, то нужно 9 листов.
Ответ: потребуется 9 листов.

614. Поезд отправился со станции в 16 ч со скоростью 54 км/ч. В 19 ч с этой же станции в противоположном направлении отправился второй поезд. В 24 ч расстояние между ними было равно 642 км. С какой скоростью двигался второй поезд?

24 − 16 = 8 (ч) время движения первого поезда
24 − 19 = 5 (ч) время движения второго поезда
8 * 54 = 432 (км) проехал первый поезд
642 − 432 = 210 (км) проехал второй поезд
210 : 5 = 42 (км/ч) скорость второго поезда
Ответ: 42 км/ч.

615. Решите уравнение:
1) 6x + 8x − 7x = 714;
2) 23x − 19x + 5x = 1827;
3) 11x − 6x + 17 = 2042;
4) 5x + 3x − 47 = 6401.

6x + 8x − 7x = 714
7x = 714
x = 714 : 7
x = 102

23x − 19x + 5x = 1827
9x = 1827
x = 1827 : 9
x = 203

11x − 6x + 17 = 2042
5x = 2042 − 17
x = 2025 : 5
x = 405

5x + 3x − 47 = 6401
8x = 6401 + 47
x = 6448 : 8
x = 806

616. Как с помощью линейки измерить диагональ кирпича, имея еще несколько таких кирпичей? (Диагональ параллелепипеда − это отрезок, соединяющий две его вершины, не принадлежащие одной грани.)

154-155

Страница 154 - 155 учебника Параграф 23. Объем прямоугольного параллелепипеда

Нет заданий на этих страницах

156

Ответы к странице 156

617. 1) Сколько сантиметров в одном дециметре? Квадратных сантиметров в одном квадратном дециметре? Кубических сантиметров в одном кубическом дециметре?
2) Сколько сантиметров в одном метре? Квадратных сантиметров в одном квадратном метре? Кубических сантиметров в одном кубическом метре?

1) 1 дм = 10 см
1 дм2 = 10 * 10 = 100 см2
1 дм3 = 10 * 10 * 10 = 1000 см3

2) 1 м = 100 см
1 м2 = 100 * 100 = 10000 см2
1 м3 = 100 * 100 * 100 = 1000000 см3

157

Ответы к странице 157

618. Фигуры, изображенные на рисунке 178, сложены из кубиков, ребра которых равны 1 см. Найдите объем каждой фигуры.

V1= 5∗4∗3 = 60 (см3) объем прямоугольно параллелепипеда в который вложена первая фигура
4 * 2 + 3 * 2 + 2 * 2 = 8 + 6 + 4 = 18 (см3) объем первой фигуры
V2= 6∗4∗4 = 96 (см3) объем прямоугольно параллелепипеда в который вложена вторая фигура
4 * 5 + 3 * 5 = 20 + 15 = 35 (см3) объем второй фигуры.

619. Вычислите объем прямоугольного параллелепипеда, измерения которого равны 12 м, 15 м и 6 м.

V = abc = 12 * 15 * 6 = 12 * 90 = 1080 (м3 ) объем прямоугольного параллелепипеда.

620. Чему равен объем куба, ребро которого равно 6 см?

V= a3 = 63 = 6∗6∗6 = 216 (см3 )

621. Чему равен объем прямоугольного параллелепипеда с измерениями 10 дм, 8 дм и 4 дм?

V = abc = 10 * 8 * 4 = 10 * 32 = 320 (дм3) объем прямоугольного параллелепипеда.

622. Выразите:
1) в кубических миллиметрах: 7 см3 ; 38 см3 ; 12 см3 243 мм3 ; 42 см3 68 мм3 ; 54 см3 4 мм3 ; 1 дм3 20 мм3 ; 18 дм3 172 см3 ; 35 дм3 67 см3 96 мм3 ;
2) в кубических дециметрах: 4 м3 ; 264 м3 ; 10 м3 857 дм3 ; 28 м3 2 дм3 ; 44000 см3 ; 5430000 см3 .

Решение

1) 7 см3 = 7 * 1000 = 7000 мм3 
38 см3 = 38 * 1000 = 38000 мм3 
12 см3 243 мм3 = 12 * 1000 + 243 = 12243 мм3 
42 см3 68 мм3 = 42 * 1000 + 68 = 42068 мм3 
54 см3 4 мм3 = 54 * 1000 + 4 = 54004 мм3 
1 дм3 20 мм3 = 1 * 1000000 + 20 = 1000020 мм3 
18 дм3 172 см3 = 18 * 1000000 + 172 * 1000 = 18172000 мм3 
35 дм3 67 см3 96 мм3 = 35 * 1000000 + 67 * 1000 + 96 = 35067096 мм3 

2) 4 м3 = 4 * 1000 = 4000 дм3 
264 м3 = 264 * 1000 = 264000 дм3 
10 м3 857 дм3 = 10 * 1000 + 857 = 10857 дм3 
28 м3 2 дм3 = 28 * 1000 + 2 = 28002 дм3 
44000 см3 = 44000 : 1000 = 44 дм3 
5430000 см3 = 5430000 : 1000 = 5430 дм3 

623. Выразите в кубических сантиметрах: 8 дм3 ; 62 дм3 ; 378000 мм3 ; 520000 мм3 ; 78 дм3 325 см3 ; 56 дм3 14 см3 ; 8 м3 4 дм3 6 см3 .

Решение

8 дм3 = 8 * 1000 = 8000 см3 
62 дм3 = 62 * 1000 = 62000 см3 
378000 мм3 = 378000 : 1000 = 378 см3 
520000 мм3 = 520000 : 1000 = 520 см3 
78 дм3 325 см3 = 78 * 1000 + 325 = 78325 см3 
56 дм3 14 см3 = 56 * 1000 + 14 = 56014 см3 
8 м3 4 дм3 6 см3 = 8 * 1000000 + 4 * 1000 + 6 = 8004006 см3 

624. Ширина прямоугольного параллелепипеда равна 15 дм, длина − на 3 дм больше ширины, а высота − в 3 раза меньше длины. Найдите объем данного параллелепипеда.

15 + 3 = 18 (дм) длина прямоугольного параллелепипеда;
18 : 3 = 6 (дм) высота прямоугольного параллелепипеда;
15 * 6 * 18 = 90 * 18 = 1620 (дм3) объем прямоугольного параллелепипеда.

625. Высота прямоугольного параллелепипеда равна 20 см, что на 4 см меньше его длины и в 5 раз больше его ширины. Вычислите объем данного параллелепипеда.

Решение

20 + 4 = 24 (cм) длина прямоугольного параллелепипеда
20 : 5 = 4 (cм) ширина прямоугольного параллелепипеда
20 * 4 * 24 = 80 * 24 = 1920 (см3 ) объем прямоугольного параллелепипеда

626. Объем прямоугольного параллелепипеда равна 560 см3 , длина − 14 cм, ширина − 8 см. Найдите высоту данного параллелепипеда.

Решение

14 * 8 = 112 (см2) площадь основания прямоугольного параллелепипеда
560 : 12 = 5 (см) высота прямоугольного параллелепипеда

158

Ответы к странице 158

627. Длина прямоугольного параллелепипеда равна 18 см, высота − 15 см, а объем − 3240 см3 . Найдите ширину данного параллелепипеда.

Решение

V = abc
b = V : (ac) = 3240 : (18 * 15) = 3240 : 270 = 12 (см) ширина прямоугольного параллелепипеда.

628. Объем комнаты, имеющей форму прямоугольного параллелепипеда, равен 144 м3 , а высота − 4 м. Найдите площадь пола комнаты.

Решение

V = S * h
S = V : h = 144 : 4 = 36 (м2) площадь пола комнаты.

629. Спортивный зал имеет форму прямоугольного параллелепипеда, его объем равен 960 м3 , а площадь пола равна 192 м 2 . Найдите высоту спортивного зала.

Решение

V = S * h
h = V : S = 960 : 192 = 5 (м) высота зала

630. Найдите объем фигуры, изображенной на рисунке 179 (размеры даны в сантиметрах).

Решение

30 * 20 * 25 = 15000 (см3 ) объем большого прямоугольного параллелепипеда
15 * 20 * 5 = 1500 (см3 ) объем выемки
15000 − 1500 = 13500 (см3 ) объем фигуры

631. Найдите объем фигуры, изображенной на рисунке 180 (размеры даны в сантиметрах).

Решение

14 * 12 * (8 + 8) = 168 * 16 = 2688 (см3 ) объем левого прямоугольного параллелепипеда;
8 * 8 * (14 + 8) = 64 * 22 = 1408 (см3 ) объем центрального прямоугольного параллелепипеда;
15 * 14 * (8 + 8) = 210 * 16 = 3360 (см3 ) объем правого прямоугольного параллелепипеда;
2688 + 1408 + 3360 = 7456 (см3 ) объем фигуры.

632. Ребро куба, изготовленного из цинка, равно 4 см. Найдите массу куба, если масса 1 см3 цинка составляет 7 г.

Решение

V = a 3 = 4 3 = 4 ∗ 4 ∗ 4 = 64 (см3 ) объем куба
7 * 64 = 448 (г) масса куба

633. Знайка сконструировал землеройную машину, которая за 8 ч может вырыть траншею, имеющую форму прямоугольного параллелепипеда, длиной 150 м, глубиной 80 см и шириной 60 см. Сколько кубометров земли выкапывает эта машина за 1 ч? Работа скольких коротышек выполняет эта машина, если за 8 ч один коротышка может выкопать 240 дм3 земли?

Решение

150 м = 15000 см
15000 * 80 * 60 = 72000000 (см3 ) выроет машина за 8 ч
72000000 см3 = 72000 дм3 = 72 м выкапывает машина за 8 ч
72 : 8 = 9 (м3 ) выкапывает машина за 1 ч работы
72000 : 240 = 300 (к.) заменяет землеройная машина
Ответ: 72 кубометра, 300 коротышек.

159

Ответы к стр. 159

634. Куб и прямоугольный параллелепипед имеют равные объемы. Найдите площадь поверхности куба, если длина прямоугольного параллелепипеда равна 12 см, что в 2 раза больше ширины и в 4 раза больше высота параллелепипеда.

Решение

12 : 2 = 6 (см) ширина прямоугольного параллелепипеда
12 : 4 = 3 (см) высота прямоугольного параллелепипеда
12 * 6 * 3 = 216 (см3 ) объем прямоугольного параллелепипеда, а значит и куба
216 = 6 * 6 * 6, значит ребро куба равно 6 см
У куба 6 сторон.
6 * (6 * 6) = 216 (см2) площадь поверхности куба
Ответ: 216 см2

635. Ребро одного куба в 4 раза больше ребра второго. Во сколько раз:
     1) площадь поверхности первого куба больше площади поверхности второго;
     2) объем первого куба больше объема второго?

Решение:

1) Пусть a − ребро малого куба, тогда 4a − ребро большого куба, тогда:
6 ∗ ( a ∗ a ) = 6 a2 площадь поверхности малого куба
6 ∗ ( 4 a ∗ 4 a ) = 96 a2 площадь поверхности большого куба
96 a2 : 6 a2 = 16 , то есть в 16 раз площадь поверхности большого куба больше площади поверхности малого

2) Пусть a − ребро малого куба, тогда 4a − ребро большого куба, тогда:
a ∗ a ∗ a = a3 объем малого куба
4 a ∗ 4 a ∗ 4 a = 64 a3 объем большого куба
64 a3 : a3 = 64 , то есть в 64 раза объем большого куба больше объем малого.

636. Как изменится объем прямоугольного параллелепипеда, если:
1) длину увеличить в 4 раза, ширину − в 2 раза, высоту − в 5 раз;
2) ширину уменьшить в 4 раза, высоту − в 2 раза, а длину увеличить в 16 раз?

Решение

1) V = 4a * 2b * 5c = 40abc, то есть объем прямоугольного параллелепипеда увеличится в 40 раз.

2) V = (a : 4) * (b : 2) * (с * 16) = (16 : 8)abc = 2abc, то есть объем прямоугольного параллелепипеда увеличится в 2 раза.

637. Как изменится объем прямоугольного параллелепипеда, если:
1) каждое измерение увеличить в 2 раза;
2) длину уменьшить в 3 раза, высоту − в 5 раз, а ширину увеличить в 15 раз?

Решение

1) V = 2a * 2b * 2c = 8abc, то есть объем прямоугольного параллелепипеда увеличится в 8 раз.

2) V = (a : 3) * (b : 5) * (с * 15) = (15 : 15)abc = abc, то есть объем прямоугольного параллелепипеда останется прежним.

638. В бассейн, площадь дна которого равна 1 га, налили 1000000 л воды. Можно ли в этом бассейне провести соревнования по плаванию?

Решение

1 га = 1000000 дм2 площадь дна бассейна
1000000 л = 1000000 дм3  объем налитой воды
V = S * h, значит h = V : S = 1000000 дм3 : 1000000 дм2 = 1 дм = 10 см глубина налитой воды, следовательно соревнования по плаванию в таком количестве воды провести невозможно.

639. В кубе с ребром 3 см проделали три сквозных отверстия со стороной 1 см (рис. 181). Найдите объем оставшейся части.

Решение

3 * 3 * 3 = 27 (см3 ) объем большого куба
1 * 1 * 1 = 1 (см3 ) объем одного вырезанного кубики
Всего вырезали 7 кубиков
7 * 1 = 7 (см3 ) объем вырезанной части
27 − 7 = 20 (см3 ) объем оставшейся части

640. Размеры куса мыла, имеющие форму прямоугольного параллелепипеда, равны 12 см, 6 см и 4 см. Каждый день используют одинаковую массу мыла. Через 14 дней все размеры куска мыла уменьшились в 2 раза. На сколько дней хватит оставшегося куска мыла?

Решение

12 * 6 * 4 = 288 (см3 ) объем нового куска мыла
6 * 3 * 2 = 36 (см3 ) объем куска мыла через 14 дней
288 − 36 = 252 (см3 ) объем истраченного мыла за 14 дней
252 : 14 = 18 (см3 ) мыла тратится в день
36 : 18 = 2, то есть на два дня хватит оставшегося куска мыла.

641. Из одного города одновременно в противоположных направлениях выехали автобус и грузовик. Через 4 ч после начала движения расстояние между ними составляло 528 км. Скорость движения автобуса 58 км/ч. С какой скоростью двигался грузовик?

Решение

528 : 4 = 132 (км/ч) - общая скорость автобуса и грузовика
132 − 58 = 74 (км/ч) - скорость грузовика
Ответ: 74 км/ч.

642. Из двух населенных пунктов, расстояние между которыми равно 54 км, одновременно выехали навстречу друг другу два велосипедиста и встретились через 2 ч после начала движения. Скорость движения первого велосипедиста составляла 12 км/ч. С какой скоростью двигался второй велосипедист?

Решение

12 * 2 = 24 (км) - проехал первый велосипедист
54 − 24 = 30 (км) - проехал второй велосипедист
30 : 2 = 15 (км/ч) - скорость второго велосипедиста
Ответ: 15 км/ч.

160

Ответы к стр. 160

643. Найдите значение выражения:
1) 7a + 7b, если a + b = 14;
2) m * 17 + n * 17, если m + n = 1000;
3) k * 9 + 9l, если k + l = 12;
4) 4c − 4d, если c − d = 125;
5) x * 23 − 23y, если x − y = 4;
6) 56p − r * 56, если p − r = 11.

Решение

1) 7a + 7b = 7 * (a + b) = 7 * 14 = 98
2) m * 17 + n * 17 = 17 * (m + n) = 17 * 1000 = 17000
3) k * 9 + 9 l = 9 * (k + l) = 9 * 12 = 108
4) 4c − 4d = 4 * (c − d) = 4 * 125 = 500
5) x * 23 − 23y = 23 * (x − y) = 23 * 4 = 92
6) 56p − r * 56 = 56 * (p − r) = 56 * 11 = 616

644. В записи первого трехзначного числа используются только цифры 2 и 3, а в записи второго − только цифры 3 и 4. Может ли произведение этих чисел записываться только цифрами 2 и 4?

Не может, потому что умножение 3 на 2 дает число 6, умножение 2 на 4 дает 8, а 3 на 3 дает  9.

161-162

Стр. 161-162

Параграф 24. Комбинаторные задачи

Нет заданий на этих страницах.

163

Ответы к странице 163

645. Запишите все двузначные числа, в записи которых используются только цифры 1, 2 и 3 (цифры могут повторяться).

Решение

11; 12; 13; 21; 22; 23; 31; 32; 33.

646. Запишите все двузначные числа, в записи которых используются только цифры 1, 2 и 0 (цифры могут повторяться).

Решение

10; 11; 12; 20; 21; 22.

647. У ослика Иа−Иа есть три надувных шарика: красный, зеленый и желтый. Он хочет подарить по одному шарику своим друзьям: Винни−Пуху, Пятачку и Кролику. Сколько у ослика Иа − Иа есть вариантов сделать подарки своим друзьям?

Решение

Записываем первую букву для Винни, вторую для Пятачка, третью для Кролика. Обозначим цвета шариков по первым буквам (К - красный, Ж - желтый, З - зеленый). Получится 6 вариантов из трех букв: КЗЖ, КЖЗ, ЗКЖ, ЗЖК, ЖЗК, ЖКЗ.

648. Сколько двузначных чисел, все цифры которых различны, можно составить из цифр 0, 1 и 2?

Решение

Четыре цифры: 10; 12; 20; 21.

649. В футбольном турнире участвуют команды 5 "А" класса, 5 "Б" класса и 5 "В" класса. Сколько существует способов распределения первого и второго мест среди этих команд? Решение какой задачи из номеров 645 − 648 аналогично решению этой задачи?

Решение

       Место
5А 1 2 -  - 1 2
5Б 2 1 1 2  - -
5В  -  - 2 1 2 1

Cуществует  6 способов распределения первого и второго мест среди команд.
Задача аналогична задаче 647

164

Ответы к стр. 164

650. Запишите все трехзначные числа, для записи которых используются только цифры:
1) 3, 4 и 6;
2) 4, 7 и 0.
(Цифры не могут повторяться)

Решение

1) 346; 364; 436; 463; 634; 643.
20 470; 407; 704; 740.

651. Сколько различных трехзначных чисел можно составить из цифр:
1) 1 и 2;
2) 0 и 1?
(Цифры могут повторяться.)

Решение

1) 111; 112; 121; 122; 211; 212; 221; 222.
2) 100; 101; 110; 111.

652. Запишите все двузначные числа, в записи которых используются только цифры 2, 4, 9 и 0. (Цифры могут повторяться)

Решение

20; 22; 24; 29; 40; 42; 44; 49; 90; 92; 94; 99.

653. Сколько двузначных чисел можно составить из цифр 6, 7, 8 и 9 так, чтобы цифры были записаны в порядке возрастания?

Решение

Шесть чисел: 67; 68; 69; 78; 79; 89.

654. Сколько двузначных чисел можно составить из цифр 6, 7, 8 и 9 так, чтобы цифры были записаны в порядке убывания?

Решение

Шесть чисел: 98; 97; 96; 87; 86; 76.

655. Сколько существует двузначных чисел, сумма цифр которых равна 5?

Решение

Пять чисел: 14; 23; 32; 41; 50.

656. Сколько двузначных чисел, сумма цифр которых равна четному числу, можно составить из цифр 1, 2, 3, 4 (цифры могут повторяться)?

Решение

Восемь чисел: 11; 13; 22; 24; 31; 33; 42; 44.

657. Сколько двузначных чисел, сумма цифр которых равна нечетному числу, можно составить из цифр 0, 1, 2, 3?

Решение

Шесть чисел: 10; 12; 21; 23; 30; 32.

658. Кот Базилио и лиса Алиса решили украсть золотой ключик, который хранится в каморке папы Карло. Чтобы туда проникнуть, нужно подобрать двузначный код. Им известно, что дверь в каморку закрывает Буратино, который знает пока что только четыре цифры: 0, 1, 2 и 3. Какое наибольшее количество вариантов придется перебрать коту и лисе, чтобы открыть дверь?

Решение

16 вариантов:
00 10 20 30
01 11 12 13
02 12 22 32
03 13 23 33

165

Ответы к стр. 165

659. Сколько существует различных прямоугольников, периметры которых равны 24 см, а длины сторон выражены целым числом сантиметров?

Решение

P = 2 * (a + b) − периметр прямоугольника
a + b = P : 2 = 24 : 2 = 12 (см)
Существует 6 прямоугольников следующих размеров:
1 см Х 11 см;
2 см Х 10 см;
3 см Х 9 см;
4 см Х 8 см;
5 см Х 7 см;
6 см Х 6 см.

660. У Ани есть 30 одинаковых кубиков. Сколько различных прямоугольных параллелепипедов она может из них составить, если для построения одного параллелепипеда надо использовать все имеющиеся 30 кубиков?

Решение

Пять различных прямоугольных параллелепипедов можно составить:
1 Х 1 Х 30;
2 Х 5 Х 3;
1 Х 3 Х 10;
1 Х 2 Х 15;
1 Х 5 Х 6.

661. На прямой отметили четыре точки A,B, C и D. Сколько отрезков с концами в отмеченных точках можно провести? Какой из рисунков § 24 помогает решить эту задачу?

Решение

Можно провести 6 отрезков: AB; AC; AD; BC; BD; CD.

Рисунок 182 помогает решить эту задачу.

662. Подножие горы и ее вершину связывают три тропы. Сколько существует маршрутов, ведущих от подножия к вершине и затем вниз к подножию?

Решение


Подножие горы и ее вершину связывают три тропы. Сколько существует маршрутов, ведущих от подножия к вершине и затем вниз к подножию.
3 * 3 = 9 маршрутов: AOA; AOB; AOC; BOA; BOB; BOC; COA; COB; COC.

663. Спортивной команде предлагают футболки трех цветов − красного, зеленого и синего, а шорты двух цветов − белого и желтого. Сколько вариантов выбора формы есть у команды?

Решение

К каждым шортам можно подобрать по 3 футболки, значит
2 * 3 = 6
Ответ: 6 вариантов выбора - БК, БЗ, БС, ЖК, ЖЗ, ЖС

664. У Тани есть четыре платья и две пары туфель. Сколько у Тани есть вариантов выбора наряда?

Решение

4 * 2 = 8 вариантов

665. В отряде космонавтов есть три пилота и два инженера. Сколько существует способов составить экипаж, состоящий из одного пилота и одного инженера?

Решение

3 * 2 = 6 вариантов

666. На рисунке 184 изображен план одного района города. Отрезками изображены улицы. Сколько существует маршрутов из точки А в точку В, если передвигаться разрешено по улицам, ведущим вверх или вправо?

Решение

Шесть маршрутов: AHDEB; AGCFB; AHOEB; AHOFB; AGOEB; AGOFB.

667. В записи 1 * 2 * 3 * 4 вместо каждой звездочки можно поставить один из знаков "+" или "*". Чему равно наибольшее значение выражения, которое можно получить?

Решение

1 + 2 * 3 * 4 = 25

 

668. Расстояние между двумя селами равно 28 км. Из этих сел одновременно в одном направлении выехали мотоциклист и автобус. Автобус ехал впереди со скоростью 42 км/ч, а мотоциклист ехал со скоростью 56 км/ч. Через сколько часов после начала движения мотоциклист догонит автобус?

Решение

56 − 42 = 14 (км) скорость сближения мотоциклиста и автобуса;
28 : 14 = 2 (ч) потребуется мотоциклисту, чтобы догнать автобус.
Ответ: 2 часа.

166

Ответы к стр. 166

669. Решите уравнение:
1) 1376 : (34 − x) = 86;
2) 9680 : (x + 219) = 16;
3) (x − 57) : 29 = 205;
4) (x − 72) * 9 = 927.

Решение

1376 : (34 − x) = 86
34 − x = 1376 : 86
x = 34 − 16
x = 18

9680 : (x + 219) = 16
x + 219 = 9680 : 16
x = 605 − 219
x = 386

(x − 57) : 29 = 205
x − 57 = 205 * 29
x = 5945 + 57
x = 6002

(x − 72) * 9 = 927
x − 72 = 927 : 9
x = 103 + 72
x = 175

670. Одно из слагаемых в 14 раз больше другого. Во сколько раз их сумма больше меньшего слагаемого?

Пусть x − меньшее слагаемое, тогда большее 14x.
14x + x = 15x − сумма слагаемых.
15x : x = 15, то есть в 15 раз сумма больше меньшего слагаемого.

671. Вычитаемое в 12 раз больше разности. Во сколько раз уменьшаемое больше разности?

Решение

Пусть разность равна x, тогда вычитаемое равно 12x.
a − x = 12x
a = 13x
13x : x = 13, то есть в 13 раз уменьшаемое больше разности.

672. Решите кроссворд:
По горизонтали: 2. Результат арифметического действия. 3. Единица измерения времени. 4. Единица измерения углов. 5. Компонент умножения. 6. Компонент сложения.
По вертикали: 1. "Царица наук".

1 математика
2 частное
3 секунда
4 градус
5 множитель
6 слагаемое


673. В классе 30 учащихся. Они сидят по двое за 15 партами так, что половина всех девочек сидит с мальчиками. Можно ли учеников класса пересадить так, чтобы половина всех мальчиков сидела с девочками?

Решение

Если половина девочек сидит с мальчиками, то вторая половина девочек сидит друг с другом, по две за партой. Значит, половина количества девочек − четное число.
Предположим, что учеников удалось пересадить так, что половина мальчиков сидит с девочками. Тогда, по аналогичному рассуждению, половина количества мальчиков тоже четное число.
Значит и половина всего класса будет четным числом, так как это сумма двух четных чисел: половина количества мальчиков + половина количества девочек.
Так как половина учеников класса равна 30 : 2 = 15 − нечетное число, то невозможно учеников класса пересадить так, чтобы половина всех мальчиков сидела с девочками.

167-169

Стр. 167-169 Проверь себя

Тесты

170-172

Стр. 170-172 Раздел 2. Дробные числа и действия над ними.

Глава 4. Обыкновенные дроби

Параграф 15. Понятие обыкновенной дроби

Нет письменных заданий на этих страницах

173

Ответы к странице 173 учебника

674. Прочитайте дроби. Назовите числитель и знаменатель каждой дроби и поясните, что они означают.

Решение

1/5 − одна пятая; числитель равен 1; знаменатель равен 5;
7/9 − семь девятых; числитель равен 7; знаменатель равен 9;
8/11 − восемь одиннадцатых; числитель равен 8; знаменатель равен 11;
5/16 − пять шестнадцатых; числитель равен 5; знаменатель равен 16;
6/13 − шесть тринадцатых; числитель равен 6; знаменатель равен 13;
21/29 − двадцать одна двадцать девятая; числитель равен 21; знаменатель равен 29.
Знаменатель дроби показывает, на сколько равных частей разделили нечто целое, а числитель − сколько таких частей взяли.

675. Запишите в виде дроби число:
1) две пятых;
2) семь тринадцатых;
3) двадцать две шестидесятых;
4) тридцать четыре сорок третьих;
5) тридцать девять сотых;
6) сто двадцать семь тысячных.

2  , , 22 , 34 , 39 , 127
5   13   60   43 100  1000

676. Запишите дробью, какая часть фигуры, изображенной на рисунке 189, закрашена.

а) 1
    2
б) 3
    8
в) 5
    6
г) 1
    8

174

Ответы к стр. 174

677. Перерисуйте фигуру, изображенную на рисунке 190, в тетрадь и закрасьте соответствующую часть фигуры.

678. Выразите:
1) в метрах: 1 см; 5 см; 24 см; 1 дм; 7 дм; 1 мм; 4 мм; 39 мм; 247 мм;
2) в часах: 1 мин; 7 мин; 19 мин; 39 мин; 1 с; 4 с; 58 с.

Решение

1) 1 см = 1   м
              100 
5 см =   м
         100 
24 см = 24  м
            100 
1 дм = м 
           10 
7 дм =  м
           10 
1 мм =   1  м
          1000 
4 мм = 4    м
          1000 
39 мм =  39    м
             1000 
247 мм =  247  м
               1000 

2) 1 мин = ч
                 60
7 мин = ч
             60
19 мин = 19  ч
                60
39 мин = 39  ч
                60
1 с =    1    ч
        3600 
4 с =    4    ч
         3600
58 с =   58  ч
          3600

679. Выразите в тоннах: 1 кг; 327 кг; 58 кг; 1 ц; 3 ц.

Решение

1 кг = т
        1000
327 кг = 327  т
             1000
58 кг = 58    т
           1000
1 ц =   1   т
         100
3 ц =  3  т
        100


680. В саду росло 56 деревьев, из них 23 − яблони. Какую часть деревьев составляли яблони?

Решение

23  составляли яблони
56

681. В 5 классе учатся 32 ученика, из них 7 учеников получили за контрольную работу по математике оценку "5". Какая часть учеников класса получила за контрольную работу по математике оценку "5"?

Решение

 7 −  учеников класса получила оценку "5".
32

682. В книге напечатаны два рассказа. Один рассказ занимает 14 страниц, а второй − 19 страниц. Какую часть книги занимает каждый рассказ?

Решение

14 + 19 = 33 (стр.) - всего в книге
14 книги занимает первый рассказ
33
19 книги занимает второй рассказ
33

683. Маша испекла 24 пирожка с капустой и 28 пирожков с повидлом. Какую часть всех пирожков составляли пирожки с капустой и какую часть − пирожки с повидлом?

Решение

24 + 28 = 52 (п.) - было всего
24 всех пирожков составляли пирожки с капустой
52
28 всех пирожков составляли пирожки с повидлом
52

175

Ответы к стр. 175

684. Найдите от числа 36:
1) 1/3 ;
2) 3/4 ;
3) 5/6 ;
4) 4/9 ;
5) 5/12 ;
6) 11/18 .

36 : 3 * 1 = 12
36 : 6 * 5 = 30
36 : 12 * 5 = 15
36 : 4 * 3 = 27
36 : 12 * 5 = 15
36 : 18 * 11 = 22

685. Найдите от числа 28:
1) 1/2 ;
2) 3/7 ;
3) 9/14 ;
4) 19/28 .

28 : 2 * 1 = 14
28 : 8 * 3 = 12
28 : 14 * 9 = 18
28 : 28 * 19 = 19

686. Андрей прочитал 4/9 книги, в которой 180 страниц. Сколько страниц прочитал Андрей?

Решение

180 : 9 * 4 = 80 (стр.)
Ответ: 80 страниц прочитал Андрей.

687. Золушка сделала 72 вареника с творогом и с картошкой, причем вареники с творогом составляли 5/8 всех вареников. Сколько вареников с творогом сделала Золушка?

Решение

72 : 8 * 5 = 9 * 5 = 45 (в.) 
Ответ: 45 вареников с творогом сделала Золушка.

688. Во время Северной войны (1700 − 1721 гг.) между Россией и Швецией у деревни Лесная 28 сентября 1708 г. русская армия разбила шестнадцатитысячное шведское войско. Численность русской армии составляла 7/8 численности шведской. Какова была численность русской армии, сражавшейся у деревни Лесная?

Решение

16000 : 8 * 7 = 2000 * 7 = 14000 (ч.) 
Ответ: 14000 человек - численность русской армии.

689. Длина минутной стрелки курантов на Спасской башне Московского Кремля равна 328 см. Высота цифр на циферблате курантов составляет 9/41 длины минутной стрелки. Вычислите высоту цифр на циферблате.

Решение

328 : 41 * 9 = 72 (см) 
Ответ: 72 см высота цифр на циферблате.

690. Колокольня Ивана Великого на территории Московского Кремля стоит на небольшом фундаменте, сложенном из глыб белого камня в виде пирамиды, расширяющейся в глубину. Каменный фундамент колокольни для прочности опирается на свайное основание, образованное большим количеством вбитых в землю бревен. Глубина фундамента составляет 2/27 высоты колокольни, а длина бревен свайного основания − 2/3 глубины фундамента. Вычислите глубину фундамента колокольни (в метрах) и длину свай (в сантиметрах), если высота колокольни равна 81 м.

Решение

81 : 27 * 2 = 6 (м) - глубина фундамента
6 м = 600 см
600 : 3 * 2 = 400 (см) - длина свай
Ответ: 6 м, 400 см.

691. Найдите число, если:
1) 1/2 ;
2) 1/5 ;
3) 2/3 ;
4) 3/7 ;
5) 7/11 ;
6) 21/23 его равняется 42.

Решение

42 : 1 * 2 = 84
42 : 2 * 3 = 63
42 : 7 * 11 = 66
42 : 1 * 5 = 210
42 : 3 * 7 = 98
42 : 21 * 23 = 46

176

Ответы к стр. 176

692. Найдите число, если:
1) 1/9 ;
2) 2/5 ;
3) 2/9 ;
4) 3/10 ;
5) 5/6 ;
6) 18/19 его равняется 90.

Решение

90 : 1 * 9 = 810
90 : 2 * 9 = 405
90 : 5 * 6 = 108
90 : 2 * 5 = 225
90 : 3 * 10 = 300
90 : 18 * 19 = 95

693. Начертите координатный луч, единичный отрезок которого равен 9 см. Отметьте на нем точки, соответствующие дробям: 1/9 ; 2/9 ; 4/9 ; 5/9 ; 8/9 .

694. Начертите координатный луч, единичный отрезок которого равен 12 см. Отметьте на нем точки, соответствующие дробям: 1/12 ; 2/12 ; 5/12 ; 6/12 ; 8/12 ; 11/12 .

695. В саду росло 24 вишни, что составляло 2/9 всех деревьев сада. Сколько всего деревьев росло в саду?

Решение

24 : 2 * 9 = 108 (д.) 
Ответ: 108 деревьев росло в саду.

696. За контрольную работу по математике оценку "4" получили 12 учащихся, что составляло 4/11 учащихся класса. Сколько учащихся в этом классе?

Решение

12 : 4 * 11 = 33 (уч.) 
Ответ: 33 учащихся в этом классе

697. Какую часть площадь закрашенного треугольника (рис. 191) составляет от площади:
1) треугольника ABD;
2) четырехугольника ABCD;
3) четырехугольника ABCE.


1)  1      2)       3)   1
     4           8           12

698. Сторона квадрата ABCD равна 8 см (рис. 192). Найдите общую площадь закрашенных частей квадрата.

Решение

а) 8 * 8 = 64 (см2) − площадь всего квадрата
    2 фигуры занимает закрашенная часть
    8
    64 : 8 * 2 = 16 (см2) − площадь закрашенной части

б) 8 * 8 = 64 (см2) − площадь всего квадрата
     фигуры занимает закрашенная часть
   16
    64 : 16 * 6 = 24 (см2) − площадь закрашенной части

699. Сторона квадрата ABCD равна 4 см (рис. 193). Найдите общую площадь закрашенных частей квадрата.

Решение

а) 4 * 4 = 16 (см2) − площадь всего квадрата
   3   фигуры занимает закрашенная часть
   8
   16 : 8 * 3 = 6 (см2) − площадь закрашенной части

б) 4 * 4 = 16 (см2) − площадь всего квадрата
     фигуры занимает закрашенная часть
   8
   16 : 8 * 4 = 8 (см2) − площадь закрашенной части

177

Ответы к стр. 177

700. Сколько градусов составляют:
1) 2/15 величины прямого угла;
2) 11/20 величины развернутого угла?

Решение

1) 90° : 15 * 2 = 12°
2) 180° : 20 * 11 = 99°

701. Сколько градусов составляют:
1) 7/18 величины прямого угла;
2) 5/12 величины развернутого угла?

Решение

1) 90° : 18 * 7 = 5 * 7 = 35°
2) 180° : 12 * 5 = 15 * 5 = 75°

702. Три рыбака поймали 168 рыб. Щукин поймал 5/14 всех рыб, Окунев − 8/21 всех рыб, а Карасев − остальные. Сколько рыб поймал Карасев?

Решение

168 : 14 * 5 = 12 * 5 = 60 (р.) - поймал Щукин;
168 : 21 * 8 = 8 * 8 = 64 (р.) - поймал Окунев;
60 + 64 = 124  (р.) - поймали Щукин и Окунев вместе;
168 − 124 = 44  (р.) - поймал Карасев.
Ответ: 44 рыбы.

703. За четыре дня яхта капитана Врунгеля "Беда" прошла 624 км. В первый день было пройдено 2/13 всего расстояния, во второй − 5/26 , в третий − 5/12 , а в четвертый − оставшееся расстояние. Сколько километров прошла яхта в четвертый день?

Решение

624 : 13 * 2 = 48 * 2 = 96 (км) прошла яхта в первый день
624 : 26 * 5 = 24 * 5 = 120 (км) прошла яхта во второй день
624 : 12 * 5 = 52 * 5 = 260 (км) прошла яхта в третий день
96 + 120 + 260 = 476 (км) прошла яхта за 3 дня
624 − 476 = 148 (км) прошла яхта в четвертый день
Ответ: 148 км.

704. Мыши в знак примирения подарили коту Леопольду 9 кг 450 г корма "Мурзик". За первую неделю Леопольд съел 8/21 подарка, а за вторую неделю − 9/13 остатка. Сколько граммов корма "Мурзик" съел Леопольд за вторую неделю?

Решение

1) 9450 : 21 * 8 = 450 * 8 = 3600 (г) съел кот Леопольд за первую неделю
_9450 |21  
  84     |450
_105
  105
      0
×450
    8  
3600
2) 9450 − 3600 = 5850 (г) корма осталось после первой недели
3) 5850 : 13 * 9 = 450 * 9 = 4050 (г) корма съел Леопольд за вторую неделю
_5850 |13  
   52    |450
   _65
     65
       0
×450
    9  
4050
Ответ: 4050 г.

705. Илья Муромец заготовил для своего коня на зиму 4 т 9 ц овса. В декабре конь съел 3/7 всего запаса овса, а в январе − 9/14 остатка. Сколько центнеров овса конь съел в январе?

Решение

4 т 9 ц = 4900 кг овса.
     700
4900 : 7 * 3 = 2100 (кг) овса съел конь в декабре
4900 − 2100 = 2800 (кг) овса осталось после декабря
2800 : 14 * 9 = 200 * 9 = 1800 (кг) съел конь в январе
1800 кг = 18 ц
Ответ: 18 ц.

706. Фермеры Иван, Петр и Семен вырастили вместе 612 т ячменя и поделили урожай между собой. Ивану досталось 5/17 всего урожая, Петру − 9/16 остатка. Сколько тонн ячменя получил Семен?

Решение

612 : 17 * 5 = 36 * 5 = 180 (т) - ячменя досталось Ивану
612 − 180 = 432 (т) - ячменя осталось
     27
432 : 16 * 9 =  243 (т) - ячменя досталось Петру
180 + 243 = 423 (т) - ячменя досталось Ивану и Петру вместе
612 − 423 = 189 (т) - ячменя досталось Семену
Ответ: 189 т.

707. Чебурашка, крокодил и Шапокляк поехали в Астрахань на уборку арбузов. Вместе они заработали 10240 р. и разделили их в соответствии с тем, кто как работал. Чебурашка получил 11/32 заработанных денег, крокодил Гена − 5/8 остатка. Кто из этой компании самый работящий?

Решение

       320
10240 : 32 * 11 = 3520 (р.) - заработал Чебурашка
10240 − 3520 = 6720 (р.) - осталось
     840
6720 : 8 * 5 = 4200 (р.) - заработал крокодил Гена
3520 + 4200 = 7720 (р.) - заработали Чебурашка и крокодил вместе
10240 − 7720 = 2520 (р.) - заработала Шапокляк
4200 > 3520 > 2520, следовательно больше всех заработал крокодил Гена.
Ответ: крокодил Гена самый работящий.

178

Ответы к стр. 178

708. В детский санаторий завезли бананы, апельсины и мандарины. Масса апельсинов составляет 12/35 массы бананов, а масса мандаринов − 7/12 массы апельсинов. Сколько килограммов апельсинов и мандаринов вместе завезли в санаторий, если бананов завезли 245 кг?

Решение

245 : 35 * 12 = 7 * 12 = 84 (кг) - завезли апельсинов
84 : 12 * 7 = 7 * 7 = 49 (кг) - завезли мандаринов
84 + 49 = 133 (кг) - мандаринов и апельсинов вместе завезли в санаторий
Ответ: 133 кг.

709. Путешествуя на катере по Волге, турист в первый день проплыл 72 км, во второй день − 7/8 того, что проплыл в первый день, а в третий − 8/9 того, что проплыл во второй. На сколько километров меньше проплыл турист в третий день, чем во второй?

Решение

72 : 8 * 7 = 9 * 7 = 63 (км) - проплыл турист во второй день
63 : 9 * 8 = 7 * 8 = 56 (км) - проплыл турист в третий день
63 − 56 = 7 (км) - на столько меньше проплыл турист в третий день, чем во второй.
Ответ: на 7 км.

710. Из двух портов, расстояние между которыми равно 576 миль, одновременно навстречу друг другу вышли яхта капитана Врунгеля и корабль юнги Солнышкина. Яхта капитана Врунгеля проходила за день 42 мили, что составляют 7/9 того, что проплывал за день корабль Солнышкина. Через сколько дней после начала движения встретятся мореплаватели?

Решение

42 : 7 * 9 = 6 * 9 = 54 (мили) - проплывал за день корабль Солнышкина
42 + 54 = 96 (мили) - в день проходили вместе яхта капитана Врунгеля и корабль Солнышкина
576 : 96 = 6 (д.) - плыли до встречи яхта капитана Врунгеля и корабль Солнышкина
Ответ: 6 дней.

711. Из Цветочного и Солнечного городов выехали одновременно навстречу друг другу Знайка и Незнайка. Знайка ехал со скоростью 56 км/ч, что составляло 8/11 скорости движения Незнайки. Через сколько часов после начала движения они встретятся, если расстояние между городами равно 532 км?

Решение

56 : 8 * 11 = 7 * 11 = 77 (км/ч) - скорость Незнайки
56 + 77 = 133 (км/ч) - скорость Знайки и Незнайки
532 : 133 = 4 (ч) - пройдет до встречи Знайки и Незнайки
Ответ: через 4 часа.

712. Найдите число, 2/3 которого равны 3/7 числа 210.

Решение

210 : 7 * 3 = 30 * 3 = 90 − это 3 7 числа 210;
90 : 2 * 3 = 45 * 3 = 135 - искомое число.
Ответ: 135.

713. Найдите 5/8 числа, 5/12 которого равны 160.

Решение

160 : 5 * 12 = 32 * 12 = 384 − число 5 12 которого равны 160;
384 : 8 * 5 = 48 * 5 = 240 − искомое число.
Ответ: 240.

714. Одно из слагаемых равно 324, и оно составляет 12/25 суммы. Найдите второе слагаемое.

Решение

324 : 12 * 25 = 27 * 25 = 675 − сумма двух чисел
675 − 324 = 351 − второе слагаемое
Ответ: 351.

715. Найдите разность двух чисел, если вычитаемое равно 658 и оно составляет 7/15 уменьшаемого.

Решение

658 : 7 * 15 = 94 * 15 = 1410 − уменьшаемое
1410 − 658 = 752 − разность двух чисел
Ответ: 752.

716. Решите уравнение:
1) 9x − 4x + 39 = 94;
2) 7y + 2y − 34 = 83.

Решение

9x − 4x + 39 = 94
5x = 94 − 39
5x = 55
x = 55 : 5
x = 11

7y + 2y − 34 = 83
9y = 83 + 34
9y = 117
y = 117 : 9
y = 13

717. С двух яблонь садовник собрал 65 кг яблок, причем с одной яблони он собрал на 17 кг меньше, чем со второй. Сколько килограммов яблок он собрал с каждой яблони?

Решение:

65 - 17 = 48 (кг) - яблок собрал садовник без учета разницы в 17 кг, а значит с обеих яблонь одинаковое количество
48 : 2 = 24 (кг) - яблок он собрал с первой яблони
24 + 17 = 41 (кг) - яблок собрал со второй яблони
Ответ: 24 кг и 41 кг.

Решение с иксами:
Пусть x кг яблок собрал с первой яблони, тогда
x + 17 кг яблок собрал садовник со второй яблони.
Так как всего было собрано 65 кг яблок, то:
x + x + 17 = 65
2x = 65 − 17
x = 48 : 2
x = 24 кг собрал садовник с первой яблони
x + 17 = 24 + 17 = 41 кг яблок собрал садовник со второй яблони
Ответ: 24 кг и 41 кг.

179

Ответы к стр. 179

718. К пяти разным замкам есть пять ключей, причем неизвестно, какой ключ к какому замку подходит. Барон Мюнхаузен утверждает, что можно не более чем за десять попыток подобрать ключ к каждому замку. Прав ли барон Мюнхаузен?

Решение

Берем первый ключ и поочередно пробуем им открыть замки. Если к первым четырем замкам ключ не подошел, то значит первый ключ подходит к пятому замку, следовательно первым ключом мы сделали 4 попытки.
Берем второй ключ и поочередно пробуем им открыть оставшиеся 4 замка. Если к первым трем замкам ключ не подошел, то значит второй ключ подходит к четвертому замку, следовательно вторым ключом мы сделали 3 попытки.
Берем третий ключ и поочередно пробуем им открыть оставшиеся 3 замка. Если к первым двум замкам ключ не подошел, то значит третий ключ подходит к третьему замку, следовательно третьим ключом мы сделали 2 попытки.
Берем четвертый ключ и поочередно пробуем им открыть оставшиеся 2 замка. Если к первому замку ключ не подошел, то значит четвертый ключ подходит ко второму замку, следовательно вторым ключом мы сделали 1 попытку.
Остается пятый ключ, который подходит к первому замку.
Получается:
1 ключ (4 попытки) + 2 ключ (3 попытки) + 3 ключ (2 попытки) + 4 ключ (1 попытка) + 5 ключ (0 попыток) = 4 + 3 + 2 + 1 = 10 попыток всего.

180-183

Стр. 180 Параграф 26. Правильные и неправильные дроби

Нет письменных заданий на этих страницах.

 

184

Ответы к странице 184

719. Запишите все правильные дроби со знаменателем 8.

Решение

1 , 2 , 3 , 4 , 5 , 6 , 7
8   8   8   8   8   8   8

720. Запишите все правильные дроби со знаменателем 11.

Решение

  2   3   4  5   6   7  8   9 10
11 11 11 11 11 11 11 11 11 11

721. Запишите все неправильные дроби с числителем 8.

Решение

8   8   8   8   8   8     8
1   2   3   4   5   6   7   8

722. Запишите все неправильные дроби с числителем 11.

Решение

11 11 11 11 11 11 11 11 11 11 11
 1  2   3   4   5   6   7  8   9 10 11

723. Сравните числа:

1) 5 < 7  
   13   13
2) 37  > 34  
    41      41
3) 9  >
   25    25
4) 11  < 11  
    15     13
5) 29 > 29  
     5     6
6) 5  >
   23   24
7) 7  < 1
   12
8) 16  > 1
    15
9) 34  = 1
    34
10) 3  = 19  
      3     19
11) 3  < 4  
      4     3
12) 32  < 5  
      37     4

724. Сравните числа:

1) 16  > 9 
    23    23
2) 29  < 31
    58     58
3) 17  < 21 
    100  100
4) 17  > 17 
    40     45
5) 9  < 9 
    4     2
6) 3  < 3 
   98   94
7) 1 > 11 
          14
8) 1 < 28 
          25
9) 1 =  68 
           68
10) 22  = 4 
      22     4
11) 27  < 28 
      28    27
12) 7  > 57 
      6     59

185

Ответы к стр. 185

725. Расположите дроби в порядке убывания: 4/27 ; 9/27 ; 8/27 ; 5/27 ; 24/27 ; 20/27 .

Решение

24 ; 209 ; 85 ; 4 .
27   27   27 27  27 27

726. Расположите дроби в порядке возрастания: 3 20 ; 1 20 ; 7 20 ; 9 20 ; 17 20 ; 6 20 .

Решение

1 3 ; 6 ; 7 ; 9 ; 17 .
20 20 20 20 20  20

727. Найдите все натуральные значения x, при которых дробь x/9 будет правильной.

Решение

x = {1, 2, 3, 4, 5, 6, 7, 8}

728. Найдите все натуральные значения x, при которых дробь x/15 будет правильной.

Решение

x = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}

729. Найдите все натуральные значения x, при которых дробь 6/x будет неправильной.

Решение

x = {1, 2, 3, 4, 5, 6}

730. Найдите все натуральные значения x, при которых дробь 13/x будет неправильной.

Решение

x = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}

731. За смену рабочий должен изготовить по норме 63 детали. Но он выполняет 9/7 нормы. Сколько деталей изготавливает рабочий за смену? На сколько деталей больше нормы он изготавливает за смену?

Решение

63 : 7 * 9 = 81 (д.) - за 1 смену изготавливает рабочий
81 − 63 = 18 (д.) - на столько деталей больше нормы он изготавливает за смену
Ответ: на 18 деталей.

732. Порция пельменей в кафе "Пампушечка" состоит из 18 пельменей. Иван Гурманов съедает за обедом 20/9 порции. Сколько пельменей съедает за обедом Иван? На сколько пельменей больше одной порции он съедает?

Решение

18 : 9 * 20 = 40 (п.) - съедает за обедом Иван
40 − 18 = 22 (п.) - на столько пельменей больше одной порции он съедает
Ответ: на 22 пельменя.

733. Найдите все натуральное значение x, при которых выполняется неравенство:
1) x/14 < 9/14 ;
2) 9/16 < 9/x .

Решение

 x <  верно при:
14  14
x = 1; 2; 3; 4; 5; 6; 7; 8.

 9  < 9 верно при:
16    х
x = 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15.

734. Найдите все натуральные значение x, при которых выполняется неравенство:
1) 7 17 > x 17 ;
2) 12 x > 12 11 .

Решение

 7      верно при:
17    17
x = 1; 2; 3; 4; 5; 6.

12  > 12  верно при:
 x       11
x = 1; 2; 3; 4; 5; 6; 7; 8; 9; 10.

735. Какие цифры можно поставить вместо звездочки, чтобы:
1) дробь 4 ∗ 6  была неправильной;
                476
2) дробь 584 была правильной?
               5 ∗ 6

Решение

1) цифра 7: 476
                    476 
цифра 8: 486
                476 
цифра 9: 496
                 476 

2) цифра 8: 584
                    586 
цифра 9: 584
                596 

736. Найдите все натуральные значения b, при которых дробь 3 b + 2 16 будет правильной.

Решение

Дробь будет правильной, если числитель будет меньше знаменателя, тогда:
3b + 2 < 16
3b < 16 − 2
3b < 14
b < 14 : 3
b < 4 целых и 2 в остатке.
Тогда при b = 1; 2; 3; 4 данная дробь будет правильной.

737. Найдите все натуральные значения b, при которых дробь 42 10 + 4 b будет неправильной.

Решение

Дробь будет неправильной, если числитель будет равен или больше знаменателя, тогда:
10 + 4b ⩽ 42
4b ⩽ 42 − 10
4b ⩽ 32
b ⩽ 32 : 4
b ⩽ 8.
Тогда при b = 1; 2; 3; 4; 5; 6; 7; 8 данная дробь будет неправильной.

186

Ответы к стр. 186

738. Найдите все натуральные значения a, при которых:
1) обе дроби a/12 и 7/a будут правильными;
2) дробь 3/a будет правильной, а дробь 6/a − неправильной.

Решение

1) При 7 < a < 12, то есть при:  a = {8, 9, 10, 11}

2) При 3 < a < 8, то есть при: a = {4, 5, 6}

739. Найдите все натуральные значения a, при которых:
1) обе дроби a/8 и 9/a будут неправильными;
2) обе дроби a/10 и 15/a будут неправильными, а дробь a/13 − правильной.

1) При 7 < a < 10, то есть при: a = {8, 9}

2) При 9 < a < 13, то есть при: a = {10, 11, 12}

740. Объем прямоугольного параллелепипеда равен 180 д м 3 , а два его измерения − 6 дм и 15 дм. Найдите сумму длин всех ребер параллелепипеда.

Решение

180 : (6 * 15) = 180 : 90 = 2 (дм) - длина третьего измерения
4 * 2 + 4 * 6 + 4 * 15 = 4 * (2 + 6 + 15) = 4 * 23 = 92 (дм) - сумма длин всех ребер
Ответ: 92 см.

741. Из двух городов, расстояние между которыми равно 392 км, выехали одновременно навстречу друг другу два автомобиля. Скорость одного автомобиля равна 48 км/ч, что составляет 6/7 скорости второго. Какое расстояние будет между автомобилями через 5 ч после начала движения?

Решение

48 : 6 * 7 = 56 (км/ч) - скорость второго автомобиля
48 + 56 = 104 (км/ч) - суммарная скорость двух автомобилей
104 * 5 = 520 (км) - проедут оба автомобиля за 5 часов
520 − 392 = 128 (км) - будет между автомобилями через 5 ч после начала движения
Ответ: 128 км.

742. Мартышка, Удав, Слоненок и Попугай съели вместе 70 бананов, причем каждый из них съел хотя бы один банан. Мартышка съела больше, чем кто−либо из них, Попугай и Слоненок съели вместе 45 бананов. Сколько бананов съел Удав?

Решение

70 − 45 = 25 (б.) - съели Мартышка и Удав вместе
Так как Попугай и Слоненок съели вместе 45 бананов, то кто-то из них максимально мог съесть только 23 банана.
Так как Мартышка съела больше всех, то значит она съела 24 банана (так как это больше 23, а 25 она съесть не могла, так как Удаву бы бананов не досталось).
25 − 24 = 1 (б.) - съел Удав.
Ответ: 1 банан.

187-188

Стр. 187-188  Параграф 27. Сложение и вычитание дробей с одинаковыми знаменателями

 Нет письменных заданий на этих страницах.

189

Ответы к стр. 189 

743. Выполните действия:

1) + 5  = 7 + 5  = 12 
   18   18      18        18
2) 11  + 8 = 11 + 8  =  19 
    24    24      24         24
3) 23  − 14  = 23 − 14  = 9 
    47     47           47       47
4) 31  − 16  = 31 − 16  = 15 
    58     58          58        58
5) 3 + 6  − = 3 + 6 − 8  =
    29  29  29          29          29
6) 29  − 14  − = 29 − 14 − 9  =  6 
    64     64     64           64            64

744. Выполните действия:

1) 5  + 6  = 5 + 6  = 11 
   19   19        19      19
2) 7  − = 7 − 4  = 3 
   13   13      13       13
3) 19  + 22  = 19 + 4 − 22  =
    25     25    25           25            25
4) 34  − 15  − = 34 − 15 − 8 = 11 
    39     39     39             39         39

745. Решите уравнение:
   1) 4/15 + x = 11/15
   2) 16/21 − x = 9/21
   3) x − 4/35 = 12/35

Решение

4  + x = 11 
15         15
x = 11  −
      15    15
x = 7
     15

16  − x = 9 
21          21
x =  16  - 9 
        21   21
x = 7
     21

x − 4  = 12 
     35    35
x = 12  +
      35    35
x = 16
      35

746. Решите уравнение:
    1) 7/10 + x = 9/10 ;
    2) 29/32 − x = 15/32 .

Решение

 7  + x =
10        10
x =
     10   10
x = 2
     10

29  − x = 15 
32           32
x = 29  - 15 
      32    32
x = 14
      32

747. В первый день Миша прочитал 5/16 книги, а во второй день − 7/16 книги. Какую часть книги прочитал Миша за два дня?

Решение

 5  + 7  = 12  книги прочитал Миша за два дня
16   16    16
Ответ: 12 16

748. Для перевозки груза использовали несколько грузовиков. На один из них положили 6/19 груза, а на второй − 8/19 груза. Какую часть груза положили на эти два грузовика?

Решение

+ = 14  груза положили на эти два грузовика
19  19    19
Ответ: 14 19 груза.

749. Кот Базилио съел за обедом 9/20 кг сосисок, а лиса Алиса − на 3/20 кг больше, чем Базилио. Сколько килограммов сосисок съели за обедом Базилио и Алиса вместе?

Решение

+ 3  = 12  (кг) - съела лиса Алиса
20  20    20
+ 12 = 21  (кг) - съели за обедом Базилио и Алиса вместе
20   20    20
Ответ: 21  кг.
            20

190

Ответы к странице 190

750. Отправившись на прогулку, черепаха Тортила за первый час проползла 23/50 км, что на 5/50 км больше, чем за второй час. Сколько километров проползла Тортила за два часа?

Решение

23  −  5  = 18  (км) - проползла черепаха за второй час
50     50     50
23  + 18  = 41  (км) - проползла Тортила за два часа
50     50     50
Ответ: 41  км.
            50

751. Решите уравнение:
   1) 52/63 − x/63 = 25/63
   2) x/38 + 14/38 = 23/38
   3) ( 12/13 + x ) − 5/13 = 9/13
   4) ( x − 21/31 ) + 14/31 = 25/31

Решение

52  − x  = 25 
63    63    63
= 52  - 25  
63   63    63
= 27 
63   63
x = 27

+ 14  = 23 
38   38    38 
= 23  −  14 
38   38      38
= 9 
38  38
x = 9

(12  + x ) − =
 13             13   13
12  + x = 9 
13          13  13
x = 14  − 12 
      13     13
x = 2
     13

(x − 21  ) + 14  = 25 
       31       31      31
x − 21  =  25  - 14 
      31      31     31
x = 11  + 21 
      31    31
x = 32
      31

752. Решите уравнение:
   1) x/72 − 13/72 = 29/72 ;
   2) ( 29/42 − a ) − 13/42 = 11/42 ;
   3) 15/17 − ( b − 3/17 ) = 6/17 ;
   4) 29/43 − ( m + 13/43 ) = 5/43 .

Решение

 x 13  = 29 
72    72     72
 x  = 29  + 13 
72    72     72
 x  = 42 
72    72
x = 42

(29  − a ) − 13 = 11 
 42              42    42
29  − a = 11  + 13 
42           42     42
29  − a = 24 
42           42
a = 29  - 24 
      42    42 
a = 5
     42

15  − ( b − ) =
17             17     17
b − = 15  − 6 
     17     17   17
b − =
     17    17
b = 9  + 3
     17   17
b = 12
      17

29  − ( m + 13  ) = 5
43               43      43
m + 13  = 29  -   5
       43      43     43
m + 13  =  24
        43     43
m = 24  - 13
       43     43
m = 11
       43

753. Овощной магазин реализовал 240 кг картофеля. В первый день было продано 3/16 картофеля, а во второй − 7/16 . Сколько килограммов картофеля магазин реализовал за два дня?

Решение

3  +  7  = 10  картофеля было продано за 2 дня
16   16    16
240 : 16 * 10 = 15 * 10 = 150 (кг) - картофеля магазин реализовал за два дня.
Ответ: 150 кг.

754. Протяженность построенной дороги составляет 92 км. За первый месяц построили 6/23 дороги, а за второй месяц − 9/23 . Сколько километров дороги было построено за два месяца?

Решение

 9  = 15   дороги построили за 2 месяца
23    23    23
92 : 23 * 15 = 4 * 15 = 60 (км) дороги было построено за два месяца
Ответ: 60 км.

755. Найдите числа, которых не хватает в цепочке вычислений:

1) n = 972 − 60 = 912
a = 60 : 12 = 5
b = 12 + 19 = 31
c = 155 : b = 155 : 31 = 5
d = 155 − 108 = 47
m = 972 : 108 = 9

2) x = 192 − 100 = 92
y = 192 : 16 = 12
z = 16 + 32 = 48
p = 384 : z = 384 : 48 = 8
m = 100 − 39 = 61
q = 384 − m = 384 − 61 = 323

191

Ответы к стр. 191

756. Найдите все натуральные числа, при делении которых на 7 неполное частное будет равно остатку.

Решение

Пусть n − искомое число, тогда:
n = 7x + x
x = 1, n = 7 * 1 + 1 = 7 + 1 = 8
x = 2, n = 7 * 2 + 2 = 14 + 2 = 16
x = 3, n = 7 * 3 + 3 = 21 + 3 = 24
x = 4, n = 7 * 4 + 4 = 28 + 4 = 32
x = 5, n = 7 * 5 + 5 = 35 + 5 = 40
x = 6, n = 7 * 6 + 6 = 42 + 6 = 48
Ответ: числа 8; 16; 24; 32; 40; 48.

757. В коробке лежат 4 белых, 5 черных и 6 красных шаров. Какое наименьшее количество шаров надо вынуть из коробки, чтобы среди них обязательно оказались:
1) 3 шара одного цвета;
2) шары всех трех цветов?

Решение

1) Допустим, что за первые 6 попыток было вынуто 2 белых, 2 черных и 2 красных шара. Тогда при вынимании 7 шара обязательно окажется 3 шара одного цвета.
Ответ: 7 шаров.

2) Допустим, что за первые 11 попыток было вынуто 6 красных и 5 черных шаров. Тогда при вынимании 12 шара обязательно окажутся 3 шары всех трех цветов, так как в коробке останутся только белые шары.
Ответ: 12 шаров.

192

Стр. 192.  параграф 28. Дроби и деление натуральных чисел

Нет письменных заданий на этой странице.

 

193

Ответы к странице 193

758. Запишите в виде дроби частное: 1) 4 : 12; 2) 6 : 25 3) 16 : 8; 4) 14 : 23; 5) 12 : 23; 6) 17 : 11.

Решение

 4           16     14       12      17 
12     25     8      23       23      11

759. Запишите в виде дроби частное: 1) 5 : 7; 2) 19 : 4; 3) 1 : 6; 4) 30 : 4; 5) 6 : 1; 6) 12 : 39.

Решение

5    19    1      30     6      12
7     4     6       4      1      39

760. Запишите дробь в виде частного: 1) 7/12 ; 2) 17/584 ; 3) 11/7 .

Решение

7 = 7 : 12
12
17  = 17 : 584
584
11  = 11 : 7
7

761. Запишите дробь в виде частного: 1) 5/7 ; 2) 3/10 ; 3) 29/5 .

Решение

5  = 5 : 7
7
3  = 3 : 10
10
29  = 29 : 5
5

762. Запишите число 6 в виде дроби со знаменателем: 1) 1; 2) 4; 3) 19.

Решение

6 = 6 
      1
6 = 24 
       4
6 = 114
       19

763. Запишите число 12 в виде дроби со знаменателем: 1) 1; 2) 5; 3) 23.

Решение

12 = 12 
         1
12 = 60 
         5
12 = 276
         23

764. Решите уравнение:
   1) b/7 = 12 ;
   2) 169/m = 13 ;
   3) 126    = 21 .
        8 − y

Решение

b = 12
7
b = 12 * 7
b = 84

169  = 13
  m
m = 169 : 13
m = 13

126   = 21
8 − y
8 − y = 126 : 21
8 − y = 6
у = 8 - 2
y = 2

765. Решите уравнение:
   1) x/4 = 5 ;
   2) 105/y = 7 ;
   3) x + 12 = 14 .
           6

Решение

= 5
4
x = 5 * 4
x = 20

105  = 7
  y
y = 105 : 7
y = 15

x + 12 = 14
     6
x + 12 = 14 * 6
x + 12 = 84
x = 84 − 12
x = 72

766. У фермера Петра Грушина есть участок земли прямоугольной формы. Длина участка равна 28 м, что составляет 7/4 его ширины. На площади, равной 30/56 всего участка, фермер разбил яблоневой сад. Найдите площадь сада.

Решение

28 : 7 * 4 = 16 (м) ширина участка
28 * 16 = 448 (м2) площадь участка
448 : 56 * 30 = 8 * 30 = 240 (м2) площадь сада
Ответ: 240 м2.

194

Ответы к странице 194

767. На один грузовик можно погрузить 3 т груза. Сколько надо грузовиков, чтобы перевезти 28 т?

Решение

28 : 3 = 9 (ост. 1) при погрузке груза на 9 грузовиков останется еще одна тонна. Значит необходимо 10 грузовиков.
Ответ: 10 грузовиков.

768. В 5 классе учатся 5 учеников. Сможет ли каждый ученик этого класса обменяться открытками с пятью своими одноклассниками?

Решение

Нельзя, так как ученик не сможет обменяться открыткой сам с собой, а одноклассников у каждого всего 4.

195-197

Стр. 195-197. Параграф 29. Смешанные числа 

 Нет письменных заданий на этих страницах.

 

198

Ответы к странице 198

769. Преобразуйте неправильную дробь в смешанное число

 

770. Преобразуйте неправильную дробь в смешанное число

 

771. Запишите частное в виде дроби и выделите из полученной дроби целую и дробную части

 

772. Запишите частное в виде дроби и выделите из полученной дроби целую и дробную части.


773. Запишите число в виде неправильной дроби

 

774. Запишите число в виде неправильной дроби

 

775. Выполните действия

 

776. Выполните действия

 

199

Ответы к странице 199

777. Вычислите

 

778. Вычислите

 

779. Решите уравнение

 

780. Решите уравнение

 

781. Решите уравнение

 

782. Степан, Иван и Андрей съели арбуз. Степан съел 2/9 арбуза, Иван − 4/9. Какую часть арбуза съел Андрей?

Решение

2 + 4 = 6 арбуза съели Степан и Иван вместе
9    9    9
1− 6 = 9 - 6 = 3 арбуза съел Андрей
     9    9   9    9
Ответ: 3 арбуза.
            9

783. Мария, Ирина, Елена и Ольга съели торт. Мария съела 3/16 торта, Ирина − 5/16, Елена − 2/16. Какую часть торта съела Ольга?

3 + 5  + 2  = 10 торта съели Маша, Ирина и Лена вместе
16 16  16     16 
1 − 10  = 1610 = 6    торта съела Ольга
      16      16    16   16
Ответ:  торта.
           16

200

Ответы к странице 200

784. Три тракториста вспахали вместе поле. Бригадир записал, что один из них вспахал 5/13 поля, второй − 4/13 , а третий − 6/13 . Не ошибся ли бригадир?

Решение

Все поле равно 1, а вспахали:
 5  + + = 15  = 1  2  
13   13   13    13        13
Ответ: бригадир ошибся и записал больше, чем вспахали на самом деле.

785. Фермер решил выделить под морковь 3/20 огорода, под свеклу − 4/20 , под лук − 6/20 , под горох − 2/20 , под картофель − 7/20 . Сможет ли он реализовать свой план?

Решение

Весь огород равен 1, фермер запланировал засадить:
+ 4  + 6  + + 7  = 22  = 1   2  часть огорода, а это больше, чем целый огород.
20  20   20    20   20   20          20
Ответ: не сможет.


786. Какое наибольшее натуральное число удовлетворяет неравенству: 1) n < 123/30 ; 2) 198/15 > n ?

Решение

n < 123
       30
123  = 4   
 30          30
4 < 123
       30
Ответ: n = 4

198  > n
15
198 = 13  3 
15           15
198  > 13
15
Ответ: n = 13

787. Какое наибольшее натуральное число удовлетворяет неравенству: 1) n < 206/13 ; 2) 324/16 > n ?

Решение

n < 206
      13
206  = 15 11 
13            13
15 < 206
         13
Ответ: n = 15

324  > n
16
324  = 20  
16            16
324  > 20
16
Ответ: n = 20

788. Какое наименьшее натуральное число удовлетворяет неравенству: 1) m > 13/5 ; 2) 275/10 < m ?

Решение 

m > 13
        5
13 = 2  3 
 5         5
3 > 13
       5
Ответ: m = 3

275  < m
 10
275  = 27 
 10           10
275  < 28
10
Ответ: m = 28

789. Какое наименьшее натуральное число удовлетворяет неравенству: 1) m > 34/6 ; 2) 421/16 < m ?

Решение

m > 34
        6
34  = 5 4  
 6         6
6 > 34
       6
Ответ: m = 6

421  < m
16
421  = 26  5 
16            16
421 < 27
16
Ответ: m = 27

790. Найдите все натуральное значение x, при которых верно неравенство

Решение

2 < x  < 3 2 
   3     3        3
7  < x < 11 
3     3     3
x = {8, 9, 10}

< 17  < 2 1 
   12     x          8
17  < 17  < 17 
12       x       8
x = {9, 10, 11}

791. Найдите все натуральное значение x, при которых верно неравенство:

Решение

3 11  < < 4
   15    15
56  < x  < 60 
15    15   15
x = {57, 58, 59}

3 1  < 25  < 8  1 
   8      x          3
25 < 25  < 25 
8       x       3
x = {4, 5, 6, 7}

792. При каких натуральных значениях a является верным неравенство, левая часть которого − неправильная дробь: 1) 20/a < 2 ; 2) 4/a < a ?

Решение
20  < 2
a
20  < 20  
a       10
a = {11, 12, 13, 14, 15, 16, 17, 18, 19, 20}

> a
a
4  > a 
a     1
a = 1, так как:
4  > 1 
1     1

793. При каких натуральных значениях a является верным неравенство 10/a > a , левая часть которого − неправильная дробь?

Решение

10  > a верно при a = {1, 2, 3}
 a

794. Одна из сторон треугольника в 2 раза меньше второй и на 7 см меньше третьей. Найдите стороны треугольника, если его периметр равен 39 см.

Решение:

Схема:

1 ________|
2 ________|________|  } 39 см
3 ________|__7см_|

Поскольку 1 из сторон треугольника в 2 раза меньше 2й и на 7 см меньше 3й, то 1ю примем за 1 часть, 2ю за 2 части, а 3ю за (1 часть + 7 см).
39 - 7 = 32 (см) - приходится на 4 равные части
32 : 4 = 8 (см) - 1 часть, то есть длина первой стороны
8 * 2 = 16 (см) - длина второй стороны
8 + 7 = 15 (см) - длина третьей стороны треугольника
Ответ: 8 см, 16 см, 15 см.

Решение через х

Пусть x см длина первой стороны, тогда:
2x см длина второй стороны;
x + 7 см длина третьей стороны треугольника.
Так как периметр треугольника равен сумме длин всех его сторон, то:
x + 2x + x + 7 = 39
4x = 39 − 7
x = 32 : 4
x = 8 см длина первой стороны;
2x = 2 * 8 = 16 см длина второй стороны;
x + 7 = 8 + 7 = 15 см длина третьей стороны треугольника.
Ответ: 8 см, 16 см, 15 см.

201

Ответы к странице 201 учебника

795. Общая площадь трех крупнейших волжских водохранилищ Куйбышевского, Рыбинского и Волгоградского составляет 14 197 к м 2 . Площадь Волгоградского водохранилища на 1 463 к м 2 меньше площади Рыбинского водохранилища и на 3 383 к м 2 меньше площади Куйбышевского водохранилища. Найдите площадь каждого водохранилища.
Решение
Пусть x к м 2 площадь Волгоградского водохранилища, тогда:
x + 1463 к м 2 площадь Рыбинского водохранилища;
x + 3383 к м 2 площадь Куйбышевского водохранилища.
Так как общая площадь всех водохранилищ равна 14197 к м 2 , то:
x + x + 1463 + x + 3383 = 14197
3x = 14197 − 3383 − 1463
x = 9351 : 3
x = 3117 к м 2 площадь Волгоградского водохранилища;
3117 + 1463 = 4580 к м 2 площадь Рыбинского водохранилища;
3117 + 3383 = 6500 к м 2 площадь Куйбышевского водохранилища.
Ответ: 3117 к м 2 ; 4580 к м 2 ; 6500 к м 2 .

796. Ученики Федоров, Сидоров и Петров входили в сборную школы по шахматам. Имена этих учеников были Федор, Сидор и Петр. Известно, что фамилия Федора не Петров, волосы у Сидора рыжего цвета и учится он в 6 классе: Петров учится в 7 классе, а волосы у Федорова черного цвета. Укажите фамилию и имя каждого мальчика.
Решение
Петров не Федор, тогда:
Петров или Сидор или Петр;
Сидор учится в 6 классе, а Петров в 7, следовательно Петров Петр.
Сидор не может быть Федоровым, так как у Сидора волосы рыжие, а у Федорова черные, следовательно Сидор Сидоров, а Федор Федоров.
Ответ:
Петр Петров;
Сидор Сидоров;
Федор Федоров.

202-204

Стр. 202-204 Задание №4 Проверьте себя в тестовой форме

1. А

2. Б

3. В

4. Г

5. А

6. Б

7. Б

8. Г

9. В

10. А

11. Б

12 . Б

205-206

Глава 5. Десятичные дроби

Страница 205-206 Параграф 30. Представление о десятичных дробях

Нет письменных заданий на этих страницах

 

207

Ответы к странице 207 

 

 

 

 

 

 

 

 

 

Комментарии  

#3 Дарья :3 19.11.2018 12:52
:D :D :D Спасибо!
#2 Рита 22.10.2018 21:22
Спасибо :-) :-) :-) :-) :-) без ошибок!!!! :-) :-) :lol: :D ;-) 8)
#1 Лиза 22.10.2018 19:33
Крррррутоо! Все правильные !!!!!!!!!!!! Щас буду списывать только у вас. 7гуру на одни 555555555555555 555555555555555 555555555555555 555555555555555 55

Рейтинг:  4 / 5

Звезда активнаЗвезда активнаЗвезда активнаЗвезда активнаЗвезда не активна
 
Поделитесь страничкой в соцсетях, чтобы не потерять ее:

© Копирование допустимо только с прямой активной ссылкой на страницу с оригиналом статьи.
При любых заболеваниях не занимайтесь диагностикой и лечением самостоятельно, необходимо обязательно обратиться к врачу - специалисту.
Изображения обложек учебной литературы приведены на страницах сайта исключительно в качестве иллюстративного материала (ст. 1274 п. 1 части четвертой Гражданского кодекса РФ)